Advertisement

Genetic Programming and Evolvable Machines

, Volume 4, Issue 4, pp 311–331 | Cite as

Information Immune Systems

  • Dennis L. Chao
  • Stephanie Forrest
Article

Abstract

The concept of an information immune system (IIS) is introduced, in which undesirable information is eliminated before it can reach the user. The IIS is inspired by the natural immune systems that protect us from pathogens. IISs from multiple individuals can be combined to form a group IIS which filters out information undesirable to any of the members. The relationship between our proposed IIS architecture and the natural immune system is outlined, and potential applications, including information filtering, interactive design, and collaborative design, are discussed.

artificial immune systems collaborative design collaborative filtering evolutionary art information filtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Aha, D. W. Kibler, and M. K. Albert, “Instance-based learning algorithms, ” Machine Learning, vol. 6, pp. 37-66, 1991.Google Scholar
  2. 2.
    K. Arrow, Social Choice and Individual Values, Wiley: New York, 1951.Google Scholar
  3. 3.
    A. L. Austin, Letter to Charles Darwin, 1877, reprinted in Galton, 1879.Google Scholar
  4. 4.
    J. Balthrop, S. Forrest, and M. Glickman, “Revisting LISYS: Parameters and normal behaviour, ” in Proceedings of the 2002 Congress on Evolutionary Computation, D. B. Fogel, M. A. El-Sharkawi, X. Yao, G. Greenwood, H. Iba, P. Marrow, and M. Shackleton (eds.), IEEE Press: Piscataway, New Jersey, 2002, pp. 1045-1050.Google Scholar
  5. 5.
    N. J. Belkin and W. B. Croft, “Information filtering and information retrieval: Two sides of the same coin?” Communications of the ACM, vol. 35,no. 12, pp. 29-38, 1992.CrossRefGoogle Scholar
  6. 6.
    P. J. Bentley and D. W. Corne (eds.), Creative Evolutionary Systems, Morgan Kaufmann Publishers: San Francisco, California, 2002.Google Scholar
  7. 7.
    H. Bersini and F. J. Varela, “Hints for adaptive problem solving gleaned from immune networks, ” in Parallel Problem Solving from Nature, H. Schwefel and R. Männer (eds.), Springer-Verlag: Berlin, 1991, pp. 343-354.Google Scholar
  8. 8.
    J. A. Borghans, A. J. Noest, and R. J. de Boer, “How specific should immunological memory be?” J. Immunol., vol. 163,no. 2, pp. 569-575, 1999.Google Scholar
  9. 9.
    Brightmail Solution Suite, Brightmail Inc., San Francisco, California, 2002. http://www.brightmail.com.Google Scholar
  10. 10.
    D. L. Chao and S. Forrest, “Information immune systems, ” in Proceedings of the First International Conference on Artificial Immune Systems, J. Timmis, and P. J. Bentley (eds.), University of Kent atCanterbury Printing Unit: Canterbury, England, 2002, pp. 132-140.Google Scholar
  11. 11.
    D. L. Chao and S. Forrest, “Generating biomorphs with an aesthetic immune system, ” in ArtificialLife VIII: Proceedings of the Eighth International Conference on the Simulation and Synthesis ofLiving Systems, R. Standish, M. A. Bedau, and H. A. Abbass (eds.), MIT Press: Cambridge,Massachusetts, 2003, pp. 89-92.Google Scholar
  12. 12.
    N. Cochrane, “Mobile entrepreneur rapt in wireless e-mail advertising, ” The Age (Melbourne), vol. 24,July 2001, p. 7, 2001.Google Scholar
  13. 13.
    A. Crossen, J. Budzik, and K. J. Hammond, “Flytrap: Intelligent group music recommendation, ” inProceedings of the 7th International Conference on Intelligent User Interfaces, ACM Press: NewYork, 2002, ISBN 1-58113-382-0, pp. 184-185.Google Scholar
  14. 14.
    Cyberpatrol, SurfControl plc, Westborough, Massachusetts, 2002Google Scholar
  15. 15.
    A. C. Danto, “Can it be the ‘most wanted painting’ even if nobody wants it?” Painting by Numbers:Komar and Melamid's Scientific Guide to Art, J. Wypijewski (ed.), Farrar, Straus & Giroux: NewYork, 1997, pp. 124-139.Google Scholar
  16. 16.
    F. M. Davenport, A. V. Hennessy, and T. Francis, “Epidemiologic and immunologic significance ofage distribution to antibody to antigenic variants of influenza virus, ” J. Exp. Med., vol. 98, pp. 641-656,1953.CrossRefGoogle Scholar
  17. 17.
    R. Dawkins, The Blind Watchmaker, Longman Scientific and Technical: Harlow, UK, 1986.Google Scholar
  18. 18.
    L. N. De Castro and F. J. Von Zuben, “aiNet: An artificial immune network for data analysis, ” DataMining: A Heuristic Approach, Chap. XII., H. A. Abbass, R. A. Sarker and C. S. Newton (eds.),Idea Group Publishing: Hershey, Pennsylvania, USA, 2001, pp. 231-259.Google Scholar
  19. 19.
    C. Dubey, M. Croft, and S. L. Swain, “Naive and effector CD4+ T cells differ in their requirementsfor T cell receptor versus costimulatory signals, ” J. Immunol., vol. 157,no. 8, pp. 3280-3289, 1996.Google Scholar
  20. 20.
    S. Fazekas de St. Groth and R. G. Webster, “Disquisitions of original antigenic sin. I. Evidence inman, ” J. Exp. Med., vol. 124,no. 3, pp. 331-345, 1966.CrossRefGoogle Scholar
  21. 21.
    G. Fischer and C. Stevens, “Information access in complex, poorly structured information spaces, ” inProceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 1991),S. P. Robertson, G. M. Olson, and J. S. Olson (eds.), ACM Press: New York, 1991, pp. 63-70.Google Scholar
  22. 22.
    S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, “Self-nonself discrimination in a computer, ” inProceedings of the 1994 IEEE Symposium on Research in Security and Privacy, IEEE ComputerSociety Press: Los Alamitos, California, 1994, pp. 202-212.Google Scholar
  23. 23.
    F. C. Galton, “Composite portraits, made by combining those of many different persons into a singleresultant figure, ” Journal of the Anthropological Institute of Great Britain and Ireland, vol. 8,pp. 132-144, 1879.CrossRefGoogle Scholar
  24. 24.
    D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative filtering to weave aninformation tapestry, ” Communications of the ACM, vol. 35,no. 12, pp. 61-70, 1992.CrossRefGoogle Scholar
  25. 25.
    S. R. Hedberg, “After desktop computing: A progress report on smart environments research, ” IEEEIntelligent Systems, vol. 15,no. 5, pp. 7-9, 2000.CrossRefGoogle Scholar
  26. 26.
    S. R. Hiltz and M. Turoff, “Structuring computer-mediated communication systems to avoidinformation overload, ” Communications of the ACM, vol. 28,no. 7, pp. 680-689, 1985.CrossRefGoogle Scholar
  27. 27.
    S. A. Hofmeyr, An immunological model of distributed detection and its application to computersecurity, Ph.D. thesis, University of New Mexico: Albuquerque, New Mexico, 1999.Google Scholar
  28. 28.
    S. A. Hofmeyr and S. Forrest, “Architecture for an artificial immune system, ” EvolutionaryComputation, vol. 8,no. 4, pp. 443-473, 2000.Google Scholar
  29. 29.
    House_n Living Laboratory, School of Architecture and Planning, Massachusetts Institute ofTechnology, Cambridge, Massachusetts, 2001.Google Scholar
  30. 30.
    J. E. Hunt and D. E. Cooke, “Learning using an artificial immune system, ” J. Network Comp. Appl.,vol. 19, pp. 189-212, 1996.CrossRefGoogle Scholar
  31. 31.
    C. A. Janeway Jr, “The immune system evolved to discriminate infectious nonself from noninfectiousself, ” Immunol. Today, vol. 13,no. 1, pp. 11-16, 1992.CrossRefGoogle Scholar
  32. 32.
    E. Jenner, An Inquiry into the Causes and Effects of the Variolae Vaccinae; a Disease Discovered insome of the Western Counties of England, Particularly Gloucestershire, and Known by the Name ofthe Cow Pox, 1798.Google Scholar
  33. 33.
    N. K. Jerne, “Towards a network theory of the immune system, ” Ann. Immunol. (Inst Pasteur),vol. 125C, pp. 373-389, 1974.Google Scholar
  34. 34.
    P. Kanerva, Sparse Distributed Memory, MIT Press: Cambridge, Massachusetts, 1988.Google Scholar
  35. 35.
    C. D. Kidd, R. J. Orr, G. D. Abowd, C. G. Atkeson, I. A. Essa, B. MacIntyre, E. Mynatt, T. E. Starner, and W. Newstetter, “The aware home: A living laboratory for ubiquitous computingresearch, ” in Proceedings of the Second International Workshop on Cooperative Buildings(CoBuild'99) of Lecture Notes in Computer Science, N. A. Streitz, J. Siegel, V. Hartkopf and S. Konomi (eds.), Springer: Berlin, 1999, pp. 191-198.Google Scholar
  36. 36.
    V. Komar, A. Melamid, and J. Wypijewski, Painting by Numbers: Komar and Melamid's ScientificGuide to Art, Farrar, Straus & Giroux: New York, 1997.Google Scholar
  37. 37.
    J. Lanza, “Elevator Music: A surreal history of Muzak, easy-listening, and other moodsong, ”St. Martin's Press: New York, 1994.Google Scholar
  38. 38.
    P. Lyman and H. R. Varian, “How much information?” 2000, retrieved from http://www.sims.berkeley.edu/how-much-infoon 1 June 2002.Google Scholar
  39. 39.
    P. Machado and A. Cardoso, “All the truth about NEvAr, ” Applied Intelligence, vol. 16, pp. 101-118,20022002.zbMATHCrossRefGoogle Scholar
  40. 40.
    C. R. Mackay, W. L. Marston, L. Dudler, O. Spertini, T. F. Tedder, and W. R. Hein, “Tissue-specificmigration pathways by phenotypically distinct subpopulations of memory T cells, ” Eur J Immunol,vol. 22,no. 4, pp. 887-895, 1992.Google Scholar
  41. 41.
    T. W. Malone, K. R. Grant, and F. A. Turbak, “The Information Lens: An intelligent system forinformation sharing in organizations, ” in Proceedings of the SIGCHI Conference on Human Factorsin Computing Systems (CHI 1986), M. Mantei, and P. Orbeton (eds.), ACM Press: New York, 1986,pp. 1-8.Google Scholar
  42. 42.
    T. W. Malone, K. R. Grant, F. A. Turbak, S. A. Brobst, and M. D. Cohen, “Intelligent informationsharing systems, ” Communications of the ACM, vol. 30,no. 5, pp. 390-402, 1987.CrossRefGoogle Scholar
  43. 43.
    J. F. McCarthy and T. D. Anagnost, “MusicFX: An arbiter of group preferences for computersupported collaborative workouts, ” in Proceedings of the ACM 1998 Conference on ComputerSupported Cooperative Work, ACM Press: New York, 1998, pp. 363-372.Google Scholar
  44. 44.
    J. F. McCarthy, T. J. Costa, and E. S. Liongosari, “UniCast, OutCast & GroupCast: An explorationof new interaction paradigms for ubiquitous, peripheral displays, ” in Workshop on Distributed andDisappearing User Interfaces in Ubiquitous Computing at the SIGCHI Conference on HumanFactors in Computer Systems (CHI 2001), ACM Press: New York, 2001.Google Scholar
  45. 45.
    M. Metral, A Generic Learning Interface Agent, B.Sc. thesis, Department of Electrical Engineeringand Computer Science, Massachusetts Institute of Technology: Cambridge, Massachusetts, 1992.Google Scholar
  46. 46.
    J. Mount, S. N. Reilly, and M. Witbrock, “International Genetic Art II site, ” http://robocop.modmath.cs.cmu.edu:8001/htbin/mjwgenformII,1994, (site no longer accessible).Google Scholar
  47. 47.
    G. L. Nelson, “Sonomorphs: An application of genetic algorithms to the growth and development ofmusical organisms, ” in Proceedings of the Fourth Biennial Art & Technology Symposium,Connecticut: New London, 1993, pp. 155-169.Google Scholar
  48. 48.
    M. O'Connor, D. Cosley, J. A. Konstan, and J. Riedl, “PolyLens: A recommender system for groupsof users, ” in Proceedings of the Seventh European Conference on Computer Supported CooperativeWork, W. Prinz (ed.), Kluwer Academic: New York, 2001, pp. 199-218.Google Scholar
  49. 49.
    G. Pennington, “Just try zapping these ads, ” St. Louis Post-Dispatch, vol. 14, April 2002, p. F1,2002.Google Scholar
  50. 50.
    A. S. Perelson and G. F. Oster, “Theoretical studies of clonal selection: minimal antibody repertoiresize and reliability of self-non-self discrimination, ” J. Theor. Biol., vol. 81,no. 4, pp. 645-670, 1979.MathSciNetCrossRefGoogle Scholar
  51. 51.
    N. Postman, “Informing ourselves to death, ” Speech delivered to the German Informatics Society(Gesellschaft für Informatik), 1990.Google Scholar
  52. 52.
    N. Postman, Technopoly, The Surrender of Culture to Technology: Vintage Books, New York, 1992.Google Scholar
  53. 53.
    Realtime Blackhole List, Mail Abuse Prevention System LLC, Redwood City, California, 2002, http://www.mail-abuse.org/rbl/.Google Scholar
  54. 54.
    P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “GroupLens: An open architecturefor collaborative filtering of Netnews, ” in Proceedings of the ACM 1994 Conference on ComputerSupported Cooperative Work, R. K. Furuta and C. M. Neuwirth (eds.), ACM Press: New York, 1994,pp. 175-186.Google Scholar
  55. 55.
    M. Roesch, “Snort—lightweight intrusion detection for networks, ” in Proceedings of ThirteenthSystems Administration Conference (LISA '99), The USENIX Association, Berkeley: California,1999, pp. 229-238.Google Scholar
  56. 56.
    F. Sallusto, D. Lenig, R. Forster, M. Lipp, and A. Lanzavecchia, “Two subsets of memoryT lymphocytes with distinct homing potentials and effector functions, ” Nature, vol. 401,no. 6754,pp. 708-712, 1999.CrossRefGoogle Scholar
  57. 57.
    R. C. Schank, Dynamic Memory: A theory of reminding and learning in computers and people,Cambridge University Press: New York, 1982.Google Scholar
  58. 58.
    T. Schwartz, “Interview: Paul Simon, ” Playboy, vol. 31,no. 2, pp. 49-51, 163–174, 1984.Google Scholar
  59. 59.
    L. K. Selin, K. Vergilis, R. M. Welsh, and S. R. Nahill, “Reduction of otherwise remarkably stablevirus-specific cytotoxic T lymphocyte memory by heterologous viral infections, ” J. Exp. Med.,vol. 183,no. 6, pp. 2489-2499, 1996.CrossRefGoogle Scholar
  60. 60.
    K. Sims, “Artificial evolution for computer graphics, ” Computer Graphics, vol. 25,no. 4, pp. 319-328,1991.MathSciNetGoogle Scholar
  61. 61.
    K. Sims, Genetic Images, 1993.Google Scholar
  62. 62.
    D. J. Smith, S. Forrest, D. H. Ackley, and A. S. Perelson, “Variable efficacy of repeated annualinfluenza vaccination, ” Proc. Natl. Acad. Sci. USA, vol. 96,no. 24, pp. 14001-14006, 1999.CrossRefGoogle Scholar
  63. 63.
    D. J. Smith, S. Forrest, and A. S. Perelson, “Immunological memory is associative, ” in WorkshopNotes, Workshop 4: Immunity Based Systems, Intnl. Conf. on Multiagent Systems, 1998, pp. 62-70.Google Scholar
  64. 64.
    J. R. Smith, “Designing biomorphs with an interactive genetic algorithm, ” in Proceedings of theFourth International Conference on Genetic Algorithms (ICGA'91), R. K. Belew and L. B. Booker(eds.), Morgan Kaufmann Publishers: San Francisco, California, 1991, pp. 535-538.Google Scholar
  65. 65.
    P. D. Stahl and R. A. Ezekowitz, “The mannose receptor is a pattern recognition receptor involved inhost defense, ” Curr Opin Immunol, vol. 10,no. 1, pp. 50-55, 1998.CrossRefGoogle Scholar
  66. 66.
    C. Stanfill, D. Waltz, “Toward memory-based reasoning, ” Communications of the ACM, vol. 29,no. 12,pp. 1213-1228, 1986.CrossRefGoogle Scholar
  67. 67.
    J. Timmis, Artificial immune systems: A novel data analysis technique inspired by the immunenetwork theory, Ph.D. thesis, University of Wales, 2000.Google Scholar
  68. 68.
    S. Todd and W. Latham, Evolutionary Art and Computers, Academic Press: London, 1992.Google Scholar
  69. 69.
    “The user in control, ” Philips Research Password, vol. 3, pp. 10-13, 2000.Google Scholar
  70. 70.
    L. Van Valen, “A new evolutionary law, ” Evolutionary Theory, vol. 1, pp. 1-30, 1973.Google Scholar
  71. 71.
    “Virtual ads, real problems, ” Advertising Age, vol. 70,no. 22, p. 30, 1999.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Dennis L. Chao
    • 1
  • Stephanie Forrest
    • 1
  1. 1.Department of Computer ScienceUniversity of New MexicoAlbuquerqueU.S.A.

Personalised recommendations