Russian Journal of Genetics

, Volume 39, Issue 10, pp 1184–1190 | Cite as

Polymorphism of Six Alu Insertions in Morocco: Comparative Study between Arabs, Berbers, and Casablanca Residents

  • F. Chbel
  • M. M. de Pancorbo
  • C. Martinez-Bouzas
  • H. Azeddoug
  • M. Alvarez-Alvarez
  • M.-J. Rodriguez-Tojo
  • S. Nadifi


Alu elements are the largest family of short tandem interspersed elements (SINEs) in human who have arisen to a copy number with an excess of 500 000 copies per haploid human genome and mobilize through an RNAse polymerase III derived transcript in a process termed “retroposition.” Several features make Alu insertions a powerful tool used in population genetic studies: the polymorphic nature of many Alu insertions, the stability of an Alu insertion event and, furthermore, the ancestral state of an Alu insertion is known to be the absence (complete and exact) of the Alu element at a particular locus and the presence of an Alu insertion at the site that forward mutational change. Here we report on the distribution of six polymorphic Alu insertions in a general Moroccan population and in the Arab and Berber populations from Morocco and their relationships with other populations previously studied. Our results show that there is a small difference between Arabs and Berbers and that the Arab population was closer to African populations than Berber population which is closest to Europeans.


Small Difference Human Genome Genetic Study Large Family African Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rinehart, F.P., Rirtch, T.G., Deininger, P.L., and Schmid, C.W., Renaturation Rate Studies of a Single Family of Interspersed Repeated Sequences in Human Deoxyribonucleic Acid, Biochemistry, 1981, vol. 20, pp. 3003–3010.Google Scholar
  2. 2.
    Deininger, P.L. and Batzer, M.A., Evolution of Retroposons, Evolutionary Biology, Hect, M.K., Maclntyre, R.J., and Cleg, M.T., Eds., New York: Plenum, 1993, pp. 157–196.Google Scholar
  3. 3.
    Ullu, E. and Tschudi, C., Alu Sequences Are Processed 7SL Gene, Nature, 1984, vol. 312, pp. 171–172.Google Scholar
  4. 4.
    Rogers, J., Retroposons Defined, Nature, 1983, vol. 301, p. 460.Google Scholar
  5. 5.
    Schmid, C.W. and Maraia, R., Transcriptional and Transpositional Selection of Active SINE Sequences, Curr. Opin. Genet. Dev., 1992, vol. 2, pp. 874–882.Google Scholar
  6. 6.
    Slagel, V., Flemington, E., Traina-Dorge, V., et al., Clustering and Subfamily Relationships of the Alu Family in the Human Genome, Mol. Biol. Evol., 1987, vol. 14, pp. 19–29.Google Scholar
  7. 7.
    Willard, C., Nguyen, H.T., and Schmid, C.W., Existence of at Least Three Distinct Alu Subfamilies, J. Mol. Evol., 1987, vol. 26, pp. 180–186.Google Scholar
  8. 8.
    Britten, R.J., Baron, W.F., Stout, D.B., and Davinson, E.H., Sources and Evolution of Human Alu Repeated Sequences, Proc. Natl. Acad. Sci. USA, 1988, vol. 8, pp. 4770–4774.Google Scholar
  9. 9.
    Jurka, J. and Smith, T., A Fundamental Division in the Alu Family of Repeated Sequences, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 4775–4778.Google Scholar
  10. 10.
    Schen, M.R., Batzer, M.A., and Deininger, P.L., Evolution of the Master Alu Gene(s), J. Mol. Evol., 1991, vol. 33, pp. 311–320.Google Scholar
  11. 11.
    Deininger, P.L. and Slagel, V.K., Recently Amplified Alu Family Members Share a Common Parental Alu Sequence, Mol. Cell. Biol., 1988, vol. 8, pp. 4566–4569.Google Scholar
  12. 12.
    Batzer, M.A., Kilroy, G.E., and Richard, P.E., Structure and Variability of Recently Inserted Alu Family Members, Nucleic Acids Res., 1990, vol. 19, pp. 3619–3623.Google Scholar
  13. 13.
    Batzer, M.A. and Deininger, P.L., A Human-Specific Subfamily of Alu Sequences, Genomics, 1991, vol. 9, pp. 481–487.Google Scholar
  14. 14.
    Deininger, P.L., Batzer, M.A., Hutchinson, C.W., and Edgell, M.H., Master Genes in Mammalian Repetitive DNA Amplification, Trends Genet., 1992, vol. 8, pp. 307–312.Google Scholar
  15. 15.
    Matera, A.G., Hellmann, U., Hintz, M.F., and Schmid, C.W., Recently Transposed Alu Repeats Result from Multiple Source Genes, Nucleic Acids Res., 1990, vol. 18, pp. 6019–6023.Google Scholar
  16. 16.
    Leeflang, B.P., Liw, W.M., Hashimoto, C., et al., Phylogenetic Evidence of Multiple Alu Source Genes, J. Mol. Evol., 1992, vol. 35, pp. 7–16.Google Scholar
  17. 17.
    Jurka, J., A New Subfamily of Recently Retroposed Alu Repeats, Nucleic Acids Res., 1993, vol. 21, p. 2252.Google Scholar
  18. 18.
    Hutchinson, G.B., Andrew, S.E., McDonald, H., et al., An Element Retroposition in Two Families with Hutington Disease Defines a New Active Alu Subfamily, Nucleic Acids Res. 1993, vol. 21, pp. 3379–3383.Google Scholar
  19. 19.
    Novick, G.E., Menedez, C.M., Novick, C.C., et al., The Use of Polymorphic Alu Insertion as a New Methodological Alternative in Human Paternity Testing and Child Identification, Int. Pediatr., 1994, vol. 9, suppl. 2, pp. 60–68.Google Scholar
  20. 20.
    Novick, G.E., Novick, C.C., Yunis, J., et al., Polymorphic Human-Specific Alu Insertion as Marker for Human Identification, Electrophoresis (Weinheim, Fed. Repub. Ger.), 1995, vol. 16, pp. 1596–1601.Google Scholar
  21. 21.
    Batzer, M.A., Stoneking, M., Alegria-Hartman, M., et al., African Origin of Human-Specific Polymorphic Alu Insertions, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 12 288–12 292.Google Scholar
  22. 22.
    Batzer, M.A., Arcot, S.S., Phinney, J.W., et al., Genetic Variation of Recent Alu Insertions in Human Populations, J. Mol. Evol., 1996, vol. 46, pp. 22–29.Google Scholar
  23. 23.
    Stoneking, M., Fontius, J.J., Clifford, S.L., et al., Alu Insertion Polymorphisms and Human Evolution: Evidence for a Larger Population Size in Africa, Genome Res., 1997, vol. 7, pp. 1061–1071.Google Scholar
  24. 24.
    Comas, D., Calafell, F., Benchemsi, N., et al., Alu Insertion Polymorphisms in NW Africa and the Boundary through the Gibraltar Straits, Hum. Genet., 2000, vol. 107, no. 4, pp. 312–319.Google Scholar
  25. 25.
    Rando, J.C., Pinto, F., Gonzalez, A.M., et al., Mitochondrial DNA Analysis of Northwest African Populations Reveals Genetic Exchanges with European, Near-Eastern, and Subsaharan Populations, Ann. Hum. Genet., 1998, vol. 68, pp. 531–550.Google Scholar
  26. 26.
    Bosh, E., Calafell, F., Underbill, P.A., et al., STR Variation Is Deeply Structured by Genetic Background on the Human Y Chromosome, Am. J. Hum. Genet., 1999, vol. 65, pp. 1623–1638.Google Scholar
  27. 27.
    Bosh, E.J., Callafell, F., Pérez-Lezaun, A., et al., Genetic Structure of Northwestern Africa Revealed by STR, Eur. J. Hum. Genet., 2000, vol. 65, pp. 360–366.Google Scholar
  28. 28.
    Cavalli-Sforza, L.L., Menozzi, P., and Piazza, A., The History and Geography of Human Genes, Princeton Univ. Press, 1994.Google Scholar
  29. 29.
    Guo, S. and Thompson, E., Performing the Exact Test of Hardy-Weinberg Proportion for Multiple Alleles, Biometrics, 1992, vol. 48, pp. 361–372.Google Scholar
  30. 30.
    Raymond, M. and Rousset, F., Genepop Version 3.3: A Population Genetics Software for Exact Tests and Ecumenicism, J. Hered., 1995, vol. 86, pp. 248–249.Google Scholar
  31. 31.
    Swofford, D.L. and Selander, R., BIOSYS-1: A Computer Program for the Analysis of Allelic Variation in Population Genetics and Biochemical Systematics, Release 1.7, 1989.Google Scholar
  32. 32.
    Nei, M., F-Statistics and Analysis of Gene Diversity in Subdivided Populations, Ann. Hum. Genet., 1977, vol. 41, pp. 225–233.Google Scholar
  33. 33.
    Schneider, S., Roessli, D., and Excoffier, L., Arlequin Ver 2000: A Software for Population Genetics Data Analysis, Switzerland: Genetics and Biometry Lab., Univ. Geneva, 2000.Google Scholar
  34. 34.
    Nei, M., Genetic Distance between Populations, Am. Nat. Genet. 1972, vol. 106, pp. 283–292.Google Scholar
  35. 35.
    Felsenstein, J., PHYLIP: Phylogeny Inference Package (version 3.2), Cladistics 1989, pp. 164–166.Google Scholar
  36. 36.
    Kass, D.H., Aleman, C., Batzer, M.A., and Deininger, P.L., Identification of a Human-Specific Alu Insertion in the Factor XIIIB Gene, Genetica (The Hague), 1994, vol. 94, pp. 1–8.Google Scholar
  37. 37.
    Yang-Feng, T.L., Opdenakker, G., Volckaert, G., and Franke, U., Human Tissue-Type Plasminogen Activator Gene Located Near Chromosomal Breakpoint in Myeloproliferative Disorder, Am. J. Hum. Genet., 1986, vol. 39, pp. 79–87.Google Scholar
  38. 38.
    Webb, G.C., Coggan, M., Ichinose, A., and Board, P.G., Localization of the Coagulation Factor XIIIB Subunit Gene (F13B) to Chromosome Bands 1q31-32.1 and Restriction Fragment Polymorphism at the Locus, Hum. Genet., 1989, vol. 81, pp. 157–160.Google Scholar
  39. 39.
    Karathanasis, S.K., Apolipoprotein Multigene Family: Tandem Organization of Apolipoprotein AI, CIII and AIV Genes, Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 6374–6378.Google Scholar
  40. 40.
    Tiret, L., Riget, B., Visvikis, S., et al., Evidence of Combined Segregation and Linkage Analysis, That as Variant of the Angiotensin I-Converting Enzyme (ACE) Gene Controls Plasma ACE Levels, Am. J. Hum. Genet., 1992, vol. 51, pp. 197–205.Google Scholar
  41. 41.
    Batzer, M.A., Rubin, C.M., Hellman-Blumberg, et al., Dispersion and Insertion Polymorphism in Two Small Subfamilies of Recently Amplified Human Alu Repeats, J. Mol. Biol., 1995, vol. 247, pp. 418–427.Google Scholar
  42. 42.
    Harpending, H.C. and Ward, R.H., Chemical Systematics and Human Populations, Nitecki, M., Ed., Chicago: Univ. Chicago, 1982, pp. 213–256.Google Scholar
  43. 43.
    Weir, B.S. and Cockerham, C.C., Estimation of F-Statistics for the Analysis of Population Structure, Evolution, 1984, vol. 38, pp. 1358–1370.Google Scholar
  44. 44.
    De Pancorbo, M.M., Lopez, M., Castro, A., et al., Polymorphic Alu Insertions and Population Genetic Heterogeneity, Progress in Forensic Genetics, Olaisen Brinkman, B. and Lincoln, P.J., Eds., Elsevier Sci., 1998, pp. 572–573.Google Scholar
  45. 45.
    De Pancorbo, M.M., Lopez-Martinez Martinez, M., Martinez-Bouzas, C., et al., The Basques According to Polymorphic Alu Insertions, Hum. Genet., 2001, vol. 109, no. 2, pp. 224–233.Google Scholar
  46. 46.
    Hitti, P., The Arabs: A Short History, Gateway, Washington DC, 1990.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • F. Chbel
    • 1
    • 2
  • M. M. de Pancorbo
    • 3
  • C. Martinez-Bouzas
    • 3
  • H. Azeddoug
    • 2
  • M. Alvarez-Alvarez
    • 3
  • M.-J. Rodriguez-Tojo
    • 3
  • S. Nadifi
    • 1
  1. 1.Laboratoire de Génétique Humaine, Faculté de Médecine et de PharmacieUniversité Hassan IICasablancaMorocco
  2. 2.Laboratoire de BBCM, Faculté de Sciences, Route d'El JadidaUniversité Hassan IICasablancaMorocco
  3. 3.Dpto de Zoologia y Dinamica Cellular Animal, Facultad de FarmaciaUniversidad del PaysVasco VitoriaSpain

Personalised recommendations