Journal of Inorganic and Organometallic Polymers

, Volume 13, Issue 4, pp 193–203 | Cite as

Silicification and Biosilicification Part 7: Poly-L-Arginine Mediated Bioinspired Synthesis of Silica

  • Siddharth V. Patwardhan
  • Stephen J. ClarsonEmail author


Precipitated silica is synthesized commercially by neutralizing sodium silicate solution under harsh conditions of pH and temperature. In contrast, the formation of ornate silica structures in biological systems (biosilicification) occurs at (or close to) pH 7 under ambient conditions and is thought to be mediated by proteins. Determination of the primary sequences of these proteins has led to the identification of various amino acids that have been proposed to be important in biosilicification. The corresponding synthetic polyamino acids are now being successfully used in bioinspired materials chemistry for developing new materials and processes. Here we report the formation of well-defined silica in vitro as facilitated by poly-L-arginine (PLAr) under ambient conditions and at neutral pH. Two different silica precursors were used in this investigation; tetramethoxysilane (TMOS) and water glass. Scanning Electron Microscopy (SEM) was used for studying the silica morphology and it was revealed that the silica spheres had typical diameters in the range 300–500nm. The PLAr is a cationically charged macromolecule at neutral pH and is believed to act as a catalyst/template/scaffold for the formation of silica in vitro in analogous fashion to certain biomacromolecules that are able to facilitate silicification/biosilicification. These results are discussed here in the context of the role(s) of (bio)macromolecules that facilitate (bio)mineralization.

biosilica biomineralization arginine poly-L-arginine PLAr bioinspired synthesis TMOS water glass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. K. Iler, The chemistry of silica (Wiley, New York, 1979), (a) pp. 172.Google Scholar
  2. 2.
    T. L. Simpson and B. E. Volcani, eds., Silicon and Siliceous Structures in Biological Systems (Springer-Verlag, New York, 1981).Google Scholar
  3. 3.
    N. Kroger, R. Deutzmann, and M. Sumper, Science 286, 1129(1999). The amino acid structure and sequence of the silaffin proteins isolated from the diatom C. fusiformis has been revised in subsequent publications. The findings suggest that arginine residues may be proteolytically removed after translation of the silaffins.Google Scholar
  4. 4.
    L. L. Brott, D. J. Pikas, R. R. Naik, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarson, and M. O. Stone, Nature 413, 291(2001).Google Scholar
  5. 5.
    K. Shimizu, J. N. Cha, G. D. Stucky, and D. E. Morse, PNAS 95, 6234(1998).Google Scholar
  6. 6.
    C. C. Harrison (formerly Perry), Phytochemistry 41(1), 37(1996).Google Scholar
  7. 7.
    S. V. Patwardhan, N. Mukherjee, M. Steinitz-Kannan, and S. J. Clarson, Chem. Commun. 10, 1122(2003).Google Scholar
  8. 8.
    S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, J. Inorg. Organomet. Polym. 11(3), 193(2001).Google Scholar
  9. 9.
    S. V. Patwardhan and S. J. Clarson, Silicon Chemistry 1(3), 207(2002).Google Scholar
  10. 10.
    S. V. Patwardhan and S. J. Clarson, manuscript in preparation.Google Scholar
  11. 11.
    S. J. Clarson, P. W. Whitlock, S. V. Patwardhan, L. L. Brott, R. R. Naik, and M. O. Stone, Polymeric Materials: Science & Engineering 86, 81(2002).Google Scholar
  12. 12.
    S. V. Patwardhan and S. J. Clarson, J. Inorg. Organomet. Polym. 13(1), 49(2003).Google Scholar
  13. 13.
    S. V. Patwardhan and S. J. Clarson, J. Inorg. Organomet. Polym. 12(3-4), 109(2002).Google Scholar
  14. 14.
    T. Coradin and J. Livage, Colloids and Surfaces B: Biointerfaces 21, 329(2001).Google Scholar
  15. 15.
    T. Coradin, O. Durupthy, and J. Livage, Langmuir 18(6), 2331(2002).Google Scholar
  16. 16.
    T. Coradin, C. Roux, and J. Livage, J. Mater. Chem. 12, 1242(2002).Google Scholar
  17. 17.
    L. Sudheendra and A. R. Raju, Mater. Res. Bull. 37, 151(2002).Google Scholar
  18. 18.
    J. N. Cha, G. D. Stucky, D. E. Morse, and T. J. Deming, Nature 403, 289(2000).Google Scholar
  19. 19.
    S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, Silicon Chemistry 1(1), 47(2002).Google Scholar
  20. 20.
    S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, Polym. Bull. 48(4-5), 367(2002).Google Scholar
  21. 21.
    S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, J. Inorg. Organomet. Polym. 11(2), 117(2001).Google Scholar
  22. 22.
    T. Mizutani, H. Nagase, N. Fujuwara, and H. Ogoshi, Chem. Lett. 2, 133(1998).Google Scholar
  23. 23.
    C. C. Perry and T. Keeling-Tucker, J. Biol. Inorg. Chem. 5, 537(2000).Google Scholar
  24. 24.
    R. Tacke, Angew. Chem. Int. Ed. 38(20), 3015(1999).Google Scholar
  25. 25.
    W. Heller, Pure Appl. Chem. 12, 249(1966).Google Scholar
  26. 26.
    V. K. La Mer and T. W. Healy, Rev. Pure Appl. Chem. 13, 112(1963).Google Scholar
  27. 27.
    R. Borsali, in Handbook of Polyelectrolytes and Their Applications v. 2, S. K. Tripathy, K. Kumar, and H. S. Nalwa, eds. (American Scientific Publishers, California, 2002), Chap. 9.Google Scholar
  28. 28.
    S. V. Patwardhan, Ph.D. Dissertation, Department of Materials Science and Engineering (University of Cincinnati, 2003).Google Scholar
  29. 29.
    R. E. Hecky, K. Mopper, P. Kilham, and E. T. Degens, Mar. Biol. 19 323(1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of CincinnatiCincinnati

Personalised recommendations