Journal of Computer-Aided Materials Design

, Volume 9, Issue 3, pp 203–239 | Cite as

The Quasicontinuum Method: Overview, applications and current directions

  • Ronald E. Miller
  • E.B. Tadmor
Article

Abstract

The Quasicontinuum (QC) Method, originally conceived and developed by Tadmor, Ortiz and Phillips [1] in 1996, has since seen a great deal of development and application by a number of researchers. The idea of the method is a relatively simple one. With the goal of modeling an atomistic system without explicitly treating every atom in the problem, the QC provides a framework whereby degrees of freedom are judiciously eliminated and force/energy calculations are expedited. This is combined with adaptive model refinement to ensure that full atomistic detail is retained in regions of the problem where it is required while continuum assumptions reduce the computational demand elsewhere. This article provides a review of the method, from its original motivations and formulation to recent improvements and developments. A summary of the important mechanics of materials results that have been obtained using the QC approach is presented. Finally, several related modeling techniques from the literature are briefly discussed. As an accompaniment to this paper, a website designed to serve as a clearinghouse for information on the QC method has been established at www.qcmethod.com. The site includes information on QC research, links to researchers, downloadable QC code and documentation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tadmor, E.B., Ortiz, M. and Phillips, R., Phil. Mag. A, 73 (1996) 1529.Google Scholar
  2. 2.
    de Koning, M., Miller, R., Bulatov, V.V. and Abraham, F.F., Phil. Mag. A, 82 (2002) 2511.CrossRefGoogle Scholar
  3. 3.
    Ortiz, M., Cuitino, A.M., Knap, J. and Koslowski, M., MRS Bulletin, 26 (2001) 216.Google Scholar
  4. 4.
    Ortiz, M. and Phillips, R., Adv. Appl. Mech., 36 (1999) 1.Google Scholar
  5. 5.
    Rodney, D., Mixed atomistic/continuum methods: Static and dynamic quasicontinuum methods. In A. Finel, D. Maziere, and M. Veron, editors, Proceedings of the NATO Conference “Thermodynamics, Microstructures and Plasticity”. Kluwer, Dortrecht, 2003. To appear.Google Scholar
  6. 6.
    Tadmor, E.B., Phillips, R. and Ortiz, M., Langmuir, 12 (1996) 4529.CrossRefGoogle Scholar
  7. 7.
    Shenoy, V.B., Miller, R., Tadmor, E.B., Phillips, R. and Ortiz, M., Phys. Rev. Lett., 80 (1998) 742.CrossRefGoogle Scholar
  8. 8.
    Shenoy, V.B., Miller, R., Tadmor, E.B., Rodney, D., Phillips, R. and Ortiz, M., J. Mech. Phys. Sol., 47 (1998) 611.CrossRefGoogle Scholar
  9. 9.
    Knap, J. and Ortiz, M., J. Mech. Phys. Sol., 49 (2001) 1899.CrossRefGoogle Scholar
  10. 10.
    Carlsson, A.E., Solid State Physics, 43 (1990) 1.CrossRefGoogle Scholar
  11. 11.
    Daw, M.S. and Baskes, M.I., Phys. Rev. B, 29 (1984) 6443.CrossRefGoogle Scholar
  12. 12.
    Norskøv, J.K. and Lang, N.D., Phys. Rev. B, 21 (1980) 2131.CrossRefGoogle Scholar
  13. 13.
    Stillinger, F.H. and Weber, T.A., Phys. Rev. B, 31 (1985) 5262.CrossRefGoogle Scholar
  14. 14.
    Zienkiewicz, O.C., The Finite Element Method, volume 1-2. McGraw-Hill, London, 4th edition (1991).Google Scholar
  15. 15.
    Ericksen, J.L., In M. Gurtin (Ed.), Phase Transformations and Material Instabilities in Solids, pp. 61-77. Academic Press, New York, 1984.Google Scholar
  16. 16.
    Okabe, A., Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley and Sons, Chichester, England (1992).Google Scholar
  17. 17.
    Miller, R.E., J. Multiscale Comput. Engin., 1 (2003) 57.CrossRefGoogle Scholar
  18. 18.
    Rudd, R.E. and Broughton, J.Q., Phys. Stat Solidi B, 217 (2000) 251.CrossRefGoogle Scholar
  19. 19.
    Kohlhoff, S., Gumbsch, P. and Fischmeister, H.F., Phil. Mag. A, 64 (1991) 851.Google Scholar
  20. 20.
    Shilkrot, L.E., Miller, R.E. and Curtin, W.A., Phys. Rev. Lett., 89 (2002) 025501–1.CrossRefGoogle Scholar
  21. 21.
    Shilkrot, L.E., Miller, R.E. and Curtin, W.A., submitted to Acta Mat., 2003.Google Scholar
  22. 22.
    Zienkiewicz, O.C. and Zhu, J.Z., Int. J. Num. Meth. Engng., 24 (1987) 337.CrossRefGoogle Scholar
  23. 23.
    Rodney, D. and Miller, R., unpublished, 1998.Google Scholar
  24. 24.
    Tadmor, E.B., Smith, G.S., Bernstein, N. and Kaxiras, E., Phys. Rev. B, 59 (1999) 235.CrossRefGoogle Scholar
  25. 25.
    Zhang, P., Huang, Z., Geubelle, P.H., Klein, P.A. and Hwang, K.C., Int. J. Sol. and Struc., 39 (2002) 3893.CrossRefGoogle Scholar
  26. 26.
    Phillips, R., Rodney, D., Shenoy, V., Tadmor, E.B. and Ortiz, M., Modeling Simul.Mater. Sci. Eng., 7 (1999) 769.Google Scholar
  27. 27.
    Tadmor, E.B., Miller, R., Phillips, R. and Ortiz, M., J. Mater. Res., 14 (1999) 2233.Google Scholar
  28. 28.
    Picu, P.C., J. Computer-Aided Materials Design, 7 (2000) 77.CrossRefGoogle Scholar
  29. 29.
    Shenoy, V.B., Phillips, R. and Tadmor, E.B., J. Mech. Phys. Sol., 48 (2000) 649.CrossRefGoogle Scholar
  30. 30.
    Rice, J.R., J. Mech. Phys. Sol., 40 (1992) 239.CrossRefGoogle Scholar
  31. 31.
    Pharr, G.M., Oliver, W.C., Cook, R.F., Kirchner, P.D., Kroll, M.C., Dinger, T.R. and Clarke, D.R., J. Mater. Res., 7 (1992) 961.Google Scholar
  32. 32.
    Smith, G.S., Tadmor, E.B. and Kaxiras, E., Phys. Rev. Lett., 84 (2000) 1260.CrossRefGoogle Scholar
  33. 33.
    Smith, G.S., Tadmor, E.B., Bernstein, N. and Kaxiras, E., Acta Mat., 49 (2001) 4089.CrossRefGoogle Scholar
  34. 34.
    Bernstein, N. and Kaxiras, E., Phys. Rev. B, 56 (1997) 10488.CrossRefGoogle Scholar
  35. 35.
    Miller, R., Tadmor, E.B., Phillips, R. and Ortiz, M., Modeling Simul. Mater. Sci. Eng., 6 (1998) 607.CrossRefGoogle Scholar
  36. 36.
    Pillai, A.R. and Miller, R.E., Mat. Res. Soc. Symp. Proc., 653 (2001) Z2.9.1.Google Scholar
  37. 37.
    Hai, S. and Tadmor, E.B., Acta Mat., 51 (2003) 117.CrossRefGoogle Scholar
  38. 38.
    Pond, R.C. and Garcia-Garcia, L.M.F., Inst. Phys. Conf. Ser., 61 (1981) 495.Google Scholar
  39. 39.
    Chen, Q., Huang, Y., Qiao, L. and Chu, W., Sci. China (Series E), 42 (1999) 1.CrossRefGoogle Scholar
  40. 40.
    Tadmor, E.B. and Hai, S., J. Mech. Phys. Sol., 51 (2003) 765.CrossRefGoogle Scholar
  41. 41.
    de Koning, M., Miller, R., Bulatov, V.V. and Abraham, F., Mat. Res. Soc. Symp. Proc., 677 (2001) AA1.5.1.Google Scholar
  42. 42.
    Rodney, D. and Phillips, R., Phys. Rev. Lett., 82 (1999) 1704.CrossRefGoogle Scholar
  43. 43.
    Shin, C.S., Fivel, M.C., Rodney, D., Phillips, R., Shenoy, V.B. and Dupuy, L., Journal de Physique IV, 11 (2001) 19.Google Scholar
  44. 44.
    Hardikar, K., Shenoy, V. and Phillips, R., J. Mech. Phys. Sol., 49 (2001) 1951.CrossRefGoogle Scholar
  45. 45.
    Mortensen, J.J., Schiøtz, J. and Jacobsen, K.W., Challenges Mol. Simul., 4 (2002) 119.Google Scholar
  46. 46.
    Henkelman, G., Uberuaga, B.P. and Jónsson, H., J. Chem. Phys., 113 (2000) 9901.CrossRefGoogle Scholar
  47. 47.
    Rasmussen, T., Jacobsen, K.W., Leffers, T., Pedersen, O.B., Srinivasan, S.G. and Jónsson, H., Phys. Rev. Lett., 79 (1997) 3676.CrossRefGoogle Scholar
  48. 48.
    Tadmor, E.B., Waghmare, U.V., Smith, G.S. and Kaxiras, E., Acta Mat., 50 (2002) 2989.CrossRefGoogle Scholar
  49. 49.
    Tadmor, E.B. and Kaxiras, E., unpublished, 1997.Google Scholar
  50. 50.
    Shu, Y.C. and Bhattacharya, K., Phil. Mag. B, 81 (2001) 2021.Google Scholar
  51. 51.
    Shenoy, V., Shenoy, V. and Phillips, R., Mat. Res. Soc. Symp. Proc., 538 (1999) 465.Google Scholar
  52. 52.
    Cai, W., de Koning, M., Bulatov V.V. and Yip, S., Phys. Rev. Lett., 85 (2000) 321.Google Scholar
  53. 53.
    Weinan, E. and Huang, Z., Phys. Rev. Lett., 87 (2001) 135501–1.CrossRefGoogle Scholar
  54. 54.
    Curtaloro, S. and Ceder, G., Phys. Rev. Lett., 88 (2002) 255504.CrossRefGoogle Scholar
  55. 55.
    Shenoy, V., Shenoy, V. and Phillips, R., Mat. Res. Soc. Symp. Proc., 538 (1999) 465.Google Scholar
  56. 56.
    LeSar, R., Najafabadi, R. and Srolovitz, D.J., Phys. Rev. Lett., 63 (1989) 624.CrossRefGoogle Scholar
  57. 57.
    Foiles, S.M., Phys. Rev. B, 49 (1994) 14930.CrossRefGoogle Scholar
  58. 58.
    Gao, H. and Klein, P., J. Mech. Phys. Sol., 46 (1998) 187.CrossRefGoogle Scholar
  59. 59.
    Klein, P. and Gao, H., Engng. Fracture Mech., 61 (1998) 21.CrossRefGoogle Scholar
  60. 60.
    Zhang, P., Klein, P.A., Huang, Y., Gao, H. and Wu, P.D., Computer Modeling in Engineering and Sciences, 3 2002) 263.Google Scholar
  61. 61.
    Van Vliet, K.J., Li, J., Zhu, T., Yip, S. and Suresh, S., Phys. Rev. B, 67 (2003) 104105.CrossRefGoogle Scholar
  62. 62.
    Hill, R., J. Mech. Phys. Sol., 10 (1962) 1.CrossRefGoogle Scholar
  63. 63.
    Rudnicki, J.W. and Rice, J.R., J. Mech. Phys. Sol., 23 (1975) 371.CrossRefGoogle Scholar
  64. 64.
    Zhang, P., Huang, Y., Gao, H. and Hwang, K.C., J. Appl. Mech., 69 (2002) 454.CrossRefGoogle Scholar
  65. 65.
    Johnson, H.T., Phillips, R. and Freund, L.B., Mat. Res. Soc. Symp. Proc., 538 (1999) 479.Google Scholar
  66. 66.
    Gumbsch, P., J. Mater. Res., 10 (1995) 2897.Google Scholar
  67. 67.
    Gumbsch, P. and Beltz, G.E., Modeling Simul. Mater. Sci. Eng., 3 (1995) 597.CrossRefGoogle Scholar
  68. 68.
    Insepov, Z., Sosnowski, M. and Yamada, I., Nuclear Instruments and Methods in Physics Research B, 127 (1997) 269.CrossRefGoogle Scholar
  69. 69.
    Insepov, Z., Manory, R., Matsuo, J. and Yamada, I., Phys. Rev. B, 61 (2000) 8744.CrossRefGoogle Scholar
  70. 70.
    Broughton, J.Q., Abraham, F.F., Bernstein, N. and Kaxiras, E., Phys. Rev. B, 60 (1999) 2391.CrossRefGoogle Scholar
  71. 71.
    Abraham, F.F., Broughton, J.Q., Bernstein, N. and Kaxiras, E., Comput. Phys., 12 (1998) 538.CrossRefGoogle Scholar
  72. 72.
    Rudd, R.E. and Broughton, J.Q., J. Model. Sim. Microsys., 1 (1999) 29.Google Scholar
  73. 73.
    Rudd, R.E., Mat. Res. Soc. Symp. Proc., 677 (2001) AA1.6.1.Google Scholar
  74. 74.
    Rudd, R.E. and Broughton, J.Q., Phys. Rev. B, 58 (1998) R5893.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ronald E. Miller
    • 1
  • E.B. Tadmor
    • 2
  1. 1.Department of Mechanical and Aerospace EngineeringCarleton UniversityOttawaCanada
  2. 2.Department of Mechanical EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations