Boundary-Layer Meteorology

, Volume 110, Issue 2, pp 255–279 | Cite as

Atmospheric Disturbances that Generate Intermittent Turbulence in Nocturnal Boundary Layers

  • Jielun Sun
  • Donald H. Lenschow
  • Sean P. Burns
  • Robert M. Banta
  • Rob K. Newsom
  • Richard Coulter
  • Stephen Frasier
  • Turker Ince
  • Carmen Nappo
  • Ben B. Balsley
  • Michael Jensen
  • Larry Mahrt
  • David Miller
  • Brian Skelly
Article

Abstract

Using the unprecedented observational facilities deployed duringthe 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99),we found three distinct turbulent events on the night of 18October 1999. These events resulted from a density current,solitary wave, and internal gravity wave, respectively. Our studyfocuses on the turbulence intermittency generated by the solitarywave and internal gravity wave, and intermittent turbulenceepisodes associated with pressure change and wind direction shiftsadjacent to the ground. Both the solitary and internal gravitywaves propagated horizontally and downward. During the passage ofboth the solitary and internal gravity waves, local thermal andshear instabilities were generated as cold air was pushed abovewarm air and wind gusts reached to the ground. These thermal andshear instabilities triggered turbulent mixing events. Inaddition, strong vertical acceleration associated with thesolitary wave led to large non-hydrostatic pressure perturbationsthat were positively correlated with temperature. The directionaldifference between the propagation of the internal gravity waveand the ambient flow led to lateral rolls. These episodic studiesdemonstrate that non-local disturbances are responsible for localthermal and shear instabilities, leading to intermittentturbulence in nocturnal boundary layers. The origin of thesenon-local disturbances needs to be understood to improve mesoscalenumerical model performance.

Intermittent turbulence Internal gravity wave Nocturnal boundary layer Solitary wave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balsley, B. B., Frehlich, R. G., Meillier, Y., and Jensen, M. L.: 2002, 'Preliminary CASES-99 Measurements of Steep Vertical Gradients in Temperature and Turbulence Structure Using a Tethered Lifting System (TLS)', in 15th Symposium on Boundary Layers and Turbulence, 15-19 July 2002, Wageningen, The Netherlands, American Meteorological Society, MA, pp. 461-464.Google Scholar
  2. Balsley, B. B., Jensen, M. L., and Frehlich, R. G.: 1998, 'The Use of State-of-the-Art Kites for Profiling the Lower Atmosphere', Boundary-Layer Meteorol. 87, 1-25.Google Scholar
  3. Balsley, B. B., Williams, J. W., Jensen, M. L., Knapp, K. G., Williams, J. B., and Tyrrell, G. W.: 1994, 'Vertical Profiling of the Atmosphere Using High-Tech Kites', Environ. Sci. Technol. 28, 422-426.Google Scholar
  4. Balsley, B. B., Williams, J. B., Tyrrell, G. W., and Balsley, C. L.: 1992, 'Atmospheric Research Using Kites: Here We Go Again!', Bull. Amer. Meteorol. Soc. 73, 17-29.Google Scholar
  5. Banta, R. M., Newsom, R. K., Lundquist, J. K., Pichugina, Y. L., Coulter, R. C., and Mahrt, L.: 2002, 'Nocturnal Low-Level Jet Characteristics over Kansas during CASES-99', Boundary-Layer Meteorol. 105, 221-252.Google Scholar
  6. Blumen, W., Banta, R., Burns, S. P., Fritts, D. C., Newsom, R., Poulos, G. S., and Sun, J.: 2001, 'Turbulence Statistics of a Kelvin-Helmholtz Billow Event Observed in the Night-Time Boundary Layer during the Cooperative Atmosphere-Surface Exchange Study Field Program', Dyn. Atmos. Oceans 34, 189-204.Google Scholar
  7. Cheung, T. K. and Little, C. G.: 1990, 'Meteorological Tower, Microbarograph Array, and Sodar Observations of Solitary-LikeWaves in the Nocturnal Boundary Layer', J. Atmos. Sci. 47, 2516-2536.Google Scholar
  8. Chimonas, G.: 1993, 'Surface Drag Instabilities in the Atmospheric Boundary Layer', J. Atmos. Sci. 50, 1914-1924.Google Scholar
  9. Christie, D. R.: 1989, 'Long Nonlinear Waves in the Lower Atmosphere', J. Atmos. Sci. 46, 1462-1491.Google Scholar
  10. Coulter, R. L. and Martin, T. J.: 1986, 'Results from a High Power, High Frequency Sodar', Atmos. Res. 20, 257-270.Google Scholar
  11. Coulter, R. L. and Doran, J. C.: 2002, 'Spatial and Temporal Occurrences of Intermittent Turbulence during CASES-99', Boundary-Layer Meteorol. 105, 329-349.Google Scholar
  12. Coulter, R. L. and Martin, T. J.: 1986, 'Results from a High Power, High Frequency Sodar', Atmos. Res. 20, 257-270.Google Scholar
  13. Doran, J. C. and Horst, T. W.: 1981, 'Velocity and Temperature Oscillations in Drainage Winds', J. Appl. Meteorol. 20, 360-364.Google Scholar
  14. Droegemeier, K. K. and Wilhelmson, R. B.: 1986, 'Kelvin-Helmholtz Instability in a Numerically Simulated Thunderstorm Outflow', Bull. Amer. Meteorol. Soc. 67, 416-417.Google Scholar
  15. Einaudi, F. and Finnigan, J. J.: 1993, 'Wave-Turbulence Dynamics in the Stably Stratified Boundary Layer', J. Atmos. Sci. 50, 1841-1864.Google Scholar
  16. Einaudi, F., Bedard, Jr., A. J., and Finnigan, J. J.: 1989, 'A Climatology of Gravity Waves and Other Coherent Disturbances at the Boulder Atmospheric Observatory during March-April 1984', J. Atmos. Sci. 46, 303-329.Google Scholar
  17. Emanuel, K. A.: 1983, 'On the Dynamical Definitions of “Mesoscale” ', in D. K. Lilly and T. Gal-Chen (eds.), Mesoscale Meteorology-Theories, Observations and Models, Reidel, Dordrecht, pp. 1-12.Google Scholar
  18. Etling, D.: 1990, 'On Plume Meandering under Stable Stratification', Atmos. Environ. 24A, 1979-1985.Google Scholar
  19. Finnigan, J. J.: 1988, 'Kinetic Energy Transfer between Internal Gravity Waves and Turbulence', J. Atmos. Sci. 45, 486-505.Google Scholar
  20. Finnigan, J. J., Einaudi, F., and Fua, D.: 1984, 'The Interaction between an Internal Gravity Wave and Turbulence in the Stably-Stratified Nocturnal Boundary Layer', J. Atmos. Sci. 41, 2409-2436.Google Scholar
  21. Fitzjarrald, D. R. and Moore, K. E.: 1990, 'Mechanism of Nocturnal Exchange between the Rain Forest and the Atmosphere', J. Geophys. Res. 95, 16839-16850.Google Scholar
  22. Fulton, R., Zrnic, D. S., and Doviak, R. J.: 1990, 'Initiation of a Solitary Wave Family in the Demise of a Nocturnal Thunderstorm Density Current', J. Atmos. Sci. 47, 319-337.Google Scholar
  23. Gao, W., Shaw, R. H., and Paw U, K. T.: 1989, 'Observation of Organized Structure in Turbulent Flow within and above a Forest Canopy', Boundary-Layer Meteorol. 47, 349-377.Google Scholar
  24. Gibson-Wilde, D. E., Werne, J. A., Fritts, D. C., and Hill, R. J.: 2000, 'Direct Numerical Simulation of VHF Radar Measurements of Turbulence in the Mesosphere', Radio Sci. 35, 783-798.Google Scholar
  25. Gill, A. E.: 1982, Atmosphere-Ocean Dynamics, Academic Press, 662 pp.Google Scholar
  26. Grund, C. J., Banta, R. M., George, J. L., Howell, J. N., Post, M. J. Richter, R. A., and Weickmann, A. M.: 2001, 'High-Resolution Doppler Lidar for Boundary Layer and Cloud Research', J. Atmos. Oceanic Tech. 18, 376-393.Google Scholar
  27. Hardy, K. R., Reed, R. J., and Mather, G. K.: 1973, 'Observation of Kelvin-Helmholtz Billows and their Mesoscale Environment by Radar, Instrumented Aircraft, and a Dense Radiosonde Network', Quart. J. Roy. Meteorol. Soc. 99, 279-293.Google Scholar
  28. Howell, J. and Sun, J.: 1999, 'Surface Layer Fluxes in Stable Conditions', Boundary-Layer Meteorol. 90, 495-520.Google Scholar
  29. Ince, T., Pazmany, A. L., Frasier, S. J., and McIntosh, R. E.: 1998, 'A High Resolution FM-CW Sband Radar for Boundary Layer Profiling and Cloud Applications', in Proceedings of the 1998 Battlespace Atmospherics Conference, Hanscom AFB, MA, December 1-3, 1998, pp. 432-439.Google Scholar
  30. Lee, X. and Barr, A.: 1998, 'Climatology of Gravity Waves in a Forest', Quart. J. Roy. Meteorol. Soc. 124, 1403-1419.Google Scholar
  31. Lu, Nai-Ping, Neff, W. D., and Kaimal, J. C.: 1983, 'Wave and Turbulence Structure in a Disturbed Nocturnal Inversion', Boundary-Layer Meteorol. 26, 141-155.Google Scholar
  32. Mahrt, L.: 1999, 'Stratified Atmospheric Boundary Layers', Boundary-Layer Meteorol. 90, 375-396.Google Scholar
  33. Mahrt, L. and Larsen, S.: 1982, 'Small Scale Drainage Front', Tellus 34, 579-587.Google Scholar
  34. Mahrt, L., Vickers, D., Nakamura, R., Soler, M. R., Sun, J., Burns, S., and Lenschow, D. H.: 2001, 'Shallow Drainage Flow', Boundary-Layer Meteorol. 101, 243-260.Google Scholar
  35. Nappo, C. J.: 1991, 'Sporadic Breakdowns of Stability in the PBL over Simple and Complex Terrain', Boundary-Layer Meteorol. 54, 69-87.Google Scholar
  36. Newsom, R. K. and Banta, R. M.: 2003, 'Shear-Flow Instability in the Stable Nocturnal Boundary Layer as Observed by Doppler Lidar during CASES-99', J. Atmos. Sci. 60, 16-33.Google Scholar
  37. Paw U, K. T., Brunet, Y., Collineau, S., Shaw, R. H., Maitani, T., Qiu, J., and Hipps, L.: 1992, 'On Coherent Structures in Turbulence above and within Agricultural Plant Canopies', Agric. For. Meteorol. 61, 55-68.Google Scholar
  38. Poulos, G. S., Blumen, W., Fritts, D. C., Lundquist, J. K., Sun, J., Burns, S. P., Nappo, C., Banta, R., Newsome, R., Cuxart, J., Terradellas, E., Balsley, B., and Jensen, M.: 2002, 'CASES-99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer', Bull. Amer. Meteorol. Soc. 83, 555-581.Google Scholar
  39. Rottman, J. W. and Einaudi, F.: 1993, 'Solitary Waves in the Atmosphere', J. Atmos. Sci. 50, 2116-2136.Google Scholar
  40. Sun, J., Burns, S. P., Lenschow, D. H., Banta, R., Newsom, R., Coulter, Frasier, R. S., Ince, T., Nappo, C., Cuxart, J., Blumen, W., Lee, X., and Hu, X.-Z.: 2002, Intermittent Turbulence Associated with a Density Current Passage in the Stable Boundary Layer', Boundary-Layer Meteorol. 105, 199-219.Google Scholar
  41. Sun, J., Jensen, N. O., Hummelshoej, P., Jorgensen, H., Mahrt, L., and Chen, Z.: 1998, 'Study of Forest-Atmospheric Interactions over a Beech Forest', in 23rd Conference on Agricultural and Forest Meteorology, 2-6 November 1998, Albuquerque, New Mexico, American Meteorology Society, MA, pp. 47-50.Google Scholar
  42. Wulfmeyer, V., Randall, M., Brewer, W. A., and Hardesty, R. M.: 2000, '2-µm Doppler Lidar Transmitter with High Frequency Stability and Low Chirp', Opt. Lett. 25, 1228-1230.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Jielun Sun
    • 1
  • Donald H. Lenschow
    • 1
  • Sean P. Burns
    • 1
  • Robert M. Banta
    • 2
  • Rob K. Newsom
    • 3
  • Richard Coulter
    • 4
  • Stephen Frasier
    • 5
  • Turker Ince
    • 5
  • Carmen Nappo
    • 6
  • Ben B. Balsley
    • 7
  • Michael Jensen
    • 7
  • Larry Mahrt
    • 8
  • David Miller
    • 9
  • Brian Skelly
    • 9
  1. 1.National Center for Atmospheric ResearchBoulderU.S.A
  2. 2.NOAA Environmental Technology LaboratoryBoulderU.S.A
  3. 3.Cooperative Institute for Research in the AtmosphereFort CollinsU.S.A
  4. 4.Argonne National LaboratoryArgonneU.S.A
  5. 5.University of MassachusettsAmherstU.S.A
  6. 6.Atmospheric Turbulence and Diffusion DivisionOak RidgeU.S.A
  7. 7.University of ColoradoBoulderU.S.A
  8. 8.College of Oceanic and Atmospheric SciencesOregon State UniversityCorvallisU.S.A
  9. 9.University of ConnecticutStorrsU.S.A

Personalised recommendations