Journal of Paleolimnology

, Volume 30, Issue 3, pp 333–342 | Cite as

The Holocene palaeolimnology of Sägistalsee and its environmental history – a synthesis

  • A.F. Lotter
  • H.J.B. Birks

Abstract

Multi-proxy palaeoecological and palaeolimnological studies of the sedimentary record of Sägistalsee, a small lake at the present-day timberline in the Swiss Alps, reveal distinct changes in its catchment vegetation in relation to Holocene climate change and human impact. Four phases of catchment vegetation type were defined based on plant macrofossil analyses: open Betula-Pinus cembra woodland, Abies alba-Pinus cembra woodland, Picea abies forest, and cultural pasture. The expansion of spruce ∽ 6300 cal. BP had a major impact on all abiotic proxies, whereas the reaction of the biotic proxies to this catchment change was lagged by several centuries. During the Bronze Age (ca. 4000 cal. BP) the spruce forest was cleared and the catchment began to be used as grazing pastures. Changes in sedimentology, geochemistry, and magnetic parameters closely reflect the changes in catchment vegetation. The catchment vegetation types explain a statistically significant amount of the variance in the chironomid, cladoceran, sedimentological, and magnetic data but not in the geochemical data. The strong catchment-lake interaction masks any biotic responses to millennium-scale climatic oscillations.

Mountain lake Lake sediments Ecotones Catchment-lake interactions Climate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchinson J. 1986. The Statistical Analysis of Compositional Data. Chapman and Hall, London, 416 pp.Google Scholar
  2. Ammann B., Birks H.J.B., Brooks S.J., Eicher U., von Grafenstein U., Hofmann W., Lemdahl G., Schwander J., Tobolski K. and Wick L. 2000. Quantification of biotic responses to rapid climatic changes around the Younger Dryas — a synthesis. Palaeogeogr. Palaeoclim. Palaeoecol. 159: 313–347.Google Scholar
  3. Ammann B. and Wick L. 1993. Analysis of fossil stomata of conifers as indicators of the alpine tree line fluctuations during the Holocene. In: Frenzel B. (ed.), Oscillations of the Alpine and Polar Tree Limits in the Holocene. G. Fischer Verlag, Stuttgart, pp. 175–185.Google Scholar
  4. Battarbee R.W. 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quat. Sci. Rev. 19: 107–124.Google Scholar
  5. Battarbee R.W., Thompson R., Catalan J., Grytnes J.A. and Birks H.J.B. 2002. Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the MOLAR project. J. Paleolim. 28:1–6.Google Scholar
  6. Bennett K.D. 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132: 155–170.Google Scholar
  7. Birks H.H. 2001. Plant macrofossils. In: Smol J.P., Birks H.J.B. and Last W.M. (eds), Tracking Environmental Change Using Lake Sediments. Terrestrial, Algal, and Siliceous Indicators. Developments in Paleoenvironmental Research. Kluwer Academic Publishers, Dordrecht, pp. 49–74.Google Scholar
  8. Birks H.H., Battarbee R.W., Birks H.J.B., Bradshaw E.G., Brooks S.J., Duigan C.A., Jones V.J., Lemdahl G., Peglar S., Solem J.O., Solhoy I.W., Solhoy T. and Stalsberg M.K. 2000. The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late-glacial and early-Holocene — a synthesis. J. Paleolim. 23: 91–114.Google Scholar
  9. Birks H.H. and Birks H.J.B. 2000. Future uses of pollen analysis must include macrofossils. J. Biogeogr. 27: 31–35.Google Scholar
  10. Birks H.H., Birks H.J.B., Flower R.J., Peglar S.M. and Ramdani M. 2001. Recent ecosystem dynamics in nine North African lakes in the CASSARINA Projects. Aquatic Ecology 35: 461–478.Google Scholar
  11. Birks H.J.B. and Gordon A.D. 1985. Numerical methods in Quaternary pollen analysis. Academic Press, London, 289 pp.Google Scholar
  12. Bond G., Kromer B., Beer J., Muscheler R., Evans M.N., Showers W., Hoffmann S., Lotti-Bond R., Hajdas I. and Bonani G. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science 294: 2130–2136.Google Scholar
  13. Bond G., Showers W., Cheseby M., Lotti R., Almasi P., De Menocal P., Priore P., Cullen H., Hajdas I. and Bonani G. 1997. A pervasive millenial-scale cycle in North Atlantic Holocene and glacial climates. Science 278: 1257–1266.Google Scholar
  14. Calvo E., Grimalt J. and Jansen E. 2002. High resolution UK 37 sea surface temperature reconstruction in the Norwegian Sea during the Holocene. Quat. Sci. Rev. 21: 1385–1394.Google Scholar
  15. Eggenberg S. 1995. Ein biogeographischer Vergleich von Waldgrenzen der nördlichen, inneren und südlichen Schweizeralpen. Mitt. Naturf. Gesell. Bern N.F. 52: 97–120.Google Scholar
  16. Eggenberg S. 2002. Die Waldgrenzvegetation in unterschiedlichen Klimaregionen der Alpen. Dissertationes Botanicae 360: 1–157.Google Scholar
  17. Esper J., Cook E.R. and Schweingruber F.H. 2002. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295: 2250–2253.Google Scholar
  18. Fedele F.G. and Wick L. 1996. Glacial/Postglacial transition south of Splügen pass: environment and human activity. Il Quaternario 9: 541–550.Google Scholar
  19. Gauch H.G. 1982. Noise reduction by eigenvector ordinations. Ecology 63: 1643–1649.Google Scholar
  20. Gervais B.R. and MacDonald G.M. 2001. Modern pollen and stomate deposition in lake surface sediments from across the treeline on the Kola Peninsula, Russia. Rev. Palaeobot. Palynol. 114: 223–237.Google Scholar
  21. Haas J.N., Richoz I., Tinner W. and Wick L. 1998. Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at timberline in the Alps. The Holocene 8: 301–309.Google Scholar
  22. Hausmann S., Lotter A.F., van Leeuwen J.F.N., Ohlendorf C., Lemcke G., Grönlund E. and Sturm M. 2002. Interactions of climate and land use documented in the varved sediments of Seebergsee in the Swiss Alps. The Holocene 12: 279–289.Google Scholar
  23. Heiri O. and Lotter A.F. 2003. 9000 years of chironomid assemblage dynamics in an Alpine lake: long term trends, sensitivity to disturbance, and resilience of the fauna. J. Paleolim. 30: 273–289.Google Scholar
  24. Hill M.O., Bunce R.G.H. and Shaw M.W. 1975. Indicator species analysis, a divisive polythetic method of classification, and its application to a survey of native pinewoods in Scotland. J. Ecol. 63: 597–613.Google Scholar
  25. Hirt A.M., Lanci L. and Koinig K.A. 2003. Mineral magnetic record of Holocene environmental changes in Sägistalsee, Switzerland. J. Paleolim. 30: 321–331.Google Scholar
  26. Hofmann W. 2003. The long-term succession of high-altitude cladoceran assemblages: a 9000-year record from Sägistalsee (Swiss Alps). J. Paleolim. 30: 291–296.Google Scholar
  27. Hormes A., Müller B.U. and Schlüchter C. 2001. The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene 11: 255–265.Google Scholar
  28. Jackson D.A. 1993. Stopping rules in Principal Components Analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.Google Scholar
  29. Jager J.C. and Looman C.W.N. 1987. Data collection. In: Jongman R.H.G., ter Braak C.J.F. and van Tongeren O.F.R. (eds), Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen, pp. 10–28.Google Scholar
  30. Jolliffe I.T. 1986. Principal Component Analysis. Springer Verlag, New York, 271 pp.Google Scholar
  31. Koinig K.A., Schmidt R., Sommaruga-Wögrath S., Tessadri R. and Psenner R. 1998. Climate change as the primary cause for pH shifts in a high alpine lake. Wat. Air Soil Pollut. 104: 167–180.Google Scholar
  32. Koinig K.A., Shotyk W., Lotter A.F., Ohlendorf C. and Sturm M. 2003. 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake — the role of climate, vegetation and land-use history. J. Paleolim. 30: 307–320.Google Scholar
  33. Korhola A., Vasko K., Toivonen H.T.T. and Olander H. 2002. Holocene temperature changes in northern Fennoscandia reconstructed from chironomids using Bayesian modelling. Quat. Sci. Rev. 21: 1841–1860.Google Scholar
  34. Körner C. 1999. Alpine Plant Life. Springer Verlag, Berlin, 338 pp.Google Scholar
  35. Laskar J., Jontel F., Boudin F. 1993. Orbital, precessional, and insolation quantities for the Earth from -20 Myr to +10 Myr. Astron. Astrophys. 270: 522–533.Google Scholar
  36. Legendre P. and Legendre L. 1998. Numerical Ecology. Elsevier, Amsterdam, 853 pp.Google Scholar
  37. Likens G.E. and Bormann F.H. 1974. Linkages between terrestrial and aquatic ecosystems. Biosciences 24: 447–456.Google Scholar
  38. Livingstone D.M. 1997. Break-up dates of Alpine lakes as proxy data for local and regional mean surface air temperatures. Climatic Change 37: 407–439.Google Scholar
  39. Lotter A.F., Ammann B., Birks H.J.B., Heiri O., Hirt A., Lanci L., Lemcke G., Sturm M., van Leeuwen J., Walker I.R. and Wick L. 1997a. AQUAREAL: a multi-proxy study of Holocene sediment archives in Alpine lakes. Würzb. Geogr. Manuskr. 41: 127–128.Google Scholar
  40. Lotter A.F. and Birks H.J.B. 1993. The impact of the Laacher See Tephra on terrestrial and aquatic ecosystems in the Black Forest, southern Germany. J. Quat. Sci. 8: 263–276.Google Scholar
  41. Lotter A.F. and Birks H.J.B. 2003a. Holocene sediments of Sägistalsee, a small lake at the present-day tree-line in the Swiss Alps. J. Paleolim. 30: 253–260.Google Scholar
  42. Lotter A.F. and Birks H.J.B. 2003b. Special issue: The Holocene Palaeolimnology of Sägistalsee and its Environmental History. J. Paleolim. 30: 253–342.Google Scholar
  43. Lotter A.F., Birks H.J.B., Hofmann W. and Marchetto A. 1997b. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.Google Scholar
  44. Lotter A.F., Eicher U., Birks H.J.B. and Siegenthaler U. 1992. Lateglacial climatic oscillations as recorded in Swiss lake sediments. J. Quat. Sci. 7: 187–204.Google Scholar
  45. Lotter A.F. and Juggins S. 1991. POLPROF, TRAN and ZONE: programs for plotting, editing and zoning pollen and diatom data. INQUA-Subcommission for the study of the Holocene Working Group on Data-Handling Methods, Newsletter 6: 4–6.Google Scholar
  46. MacDonald G.M. 2001. Conifer stomata. In: Smol J.P., Birks H.J.B. and Last W.M. (eds), Tracking Environmental Change Using Lake Sediments. Terrestrial, Algal, and Siliceous Indicators. Developments in Paleoenvironmental Research. Kluwer Academic Publishers, Dordrecht, pp. 33–47.Google Scholar
  47. MacDonald G.M., Edwards T.W.D., Moser K.A., Pienitz R. and Smol J.P. 1993. Rapid response of treeline vegetation and lakes to past climate warming. Nature 361: 243–246.Google Scholar
  48. Markgraf V. 1970. Palaeohistory of the spruce in Switzerland. Nature 228: 249–251.Google Scholar
  49. Nicolussi K. and Patzelt G. 2000. Discovery of early-Holocene wood and peat on the forefield of the Paterze Glacier, Eastern Alps, Austria. The Holocene 10: 191–199.Google Scholar
  50. Odum E.P., Finn J.T. and Franz E.H. 1979. Perturbation theory and the subsidy-stress gradient. Bioscience 29: 349–352.Google Scholar
  51. Oeggl K. 1991. Botanische Untersuchungen zur menschlichen Besiedlung im mittleren Alpenraum während der Bronze-und Eisenzeit. Die Räter. Arbeitsgemeinschaft Alpenländer, 709–721.Google Scholar
  52. Ohlendorf C., Sturm M. and Hausmann S. 2003. Natural environmental changes and human impact reflected in sediments of a high alpine lake in Switzerland. J. Paleolim. 30: 297–306.Google Scholar
  53. Ponader K., Pienitz R., Vincent W. And Gajewski K 2002. Limnological conditions in a subarctic lake (northern Québec, Canada) during the late Holocene: analyses based on fossil diatoms. J. Paleolim. 27: 353–366.Google Scholar
  54. Prentice I.C. 1980. Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Rev. Paleobot. Palynol. 31: 71–104.Google Scholar
  55. Rochefort R.M., Little R.L., Woodward A. and Peterson D.L. 1993. Changes in sub-alpine tree distribution in western North America: a review of climatic and other causal factors. The Holocene 4: 89–100.Google Scholar
  56. ter Braak C.J.F. 1987. Ordination. In: Jongman R.H.G., ter Braak C.J.F., van Tongeren O.F.R. (eds), Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen, pp. 91–173.Google Scholar
  57. ter Braak C.J.F. 1994. Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience 1/2: 127–140.Google Scholar
  58. ter Braak C.J.F. and Prentice I.C. 1988. A theory of gradient analysis. Adv. Ecol. Res. 18: 271–317.Google Scholar
  59. ter Braak C.J.F. and Smilauer P. 1998. CANOCO reference manual and user's guide for Canoco for Windows. Software for Canonical Community Ordination (version 4). Microcomputer Power, 352 pp.Google Scholar
  60. Tinner W. and Ammann B. 2001. Timberline paleoecology in the Alps. PAGES News 9: 9–11.Google Scholar
  61. Tranquillini W. 1993. Climate and physiology of trees in the alpine timberline regions. In: Frenzel B. (ed.), Oscillations of the Alpine and Polar Tree Limits in the Holocene. G. Fischer Verlag, Stuttgart, pp. 127–135.Google Scholar
  62. Wick L., van Leeuwen J.F.N., van der Knaap W.O. and Lotter A.F. 2003. Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. J. Paleolim. 30: 261–272.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • A.F. Lotter
    • 1
  • H.J.B. Birks
    • 2
    • 3
  1. 1.University of Utrecht, Botanical Palaeoecology, Laboratory of Palaeobotany and Palynology, Budapestlaan 4UtrechtThe Netherlands
  2. 2.University of Bergen, Botanical Institute, Allégaten 41BergenNorway and
  3. 3.Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations