Advertisement

Phytochemistry Reviews

, Volume 1, Issue 3, pp 427–439 | Cite as

Analytical tools for the detection and characterization of biologically active compounds from nature

  • D.A. van Elswijk
  • H. Irth
Article

Abstract

Nature has been recognized as a rich source of medicinal compounds for hundreds to thousands of years. Today, a vast range of drugs, which represent the cornerstones of modern pharmaceutical care, are either natural products or have been derived from them. Though providing high chemical diversity, the implementation of natural product research in modern High Throughput Screening (HTS) programs has decreased considerably during the last decade. Instead, seemingly more cost-effective and HTS compatible approaches such as combinatorial chemistry have been explored in an effort to increase the number and diversity of chemical entities. However, pharmaceutical companies are facing enormous challenges as advances in human genome description have led to an increasing number of new molecular drug targets and intensified the need for new, additional molecular diversity as a source of novel drug molecules. Natural products still offer an attractive route to alternative chemical diversities and possess a proven track record in pharmaceutical medications. Consequently, a high demand exists for novel and highly efficient screening technologies, which enable successful incorporation of natural products in drug discovery programs. Over recent years several techniques have been developed, which interfaced continuous-flow biochemical detection with a range of analytical instruments, such as LC, DAD, UV and MS. The combination of analytical technologies and continuous-flow biochemical detection has enabled biological and chemical evaluation of bioactive molecules within a single analysis and profoundly reduces the time required for compound characterization. Recent advances in this field as well as the application of continuous-flow biochemical detection for the screening of complex mixtures, such as natural product extracts, are reviewed in this paper.

LC-BCD-MS mass spectrometry natural product screening on-line biochemical detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel U, Koch C, Speitling M & Hansske FG (2002) Modern methods to produce natural product libraries. Curr. Opin. Chem. Biol. 6(4): 453–458.PubMedCrossRefGoogle Scholar
  2. Abd El Wahab SM, El Fiki NM, Mostafa F & Hassan AEB (1998) Characterisation of certain hormones in Punica granatum L. seeds. Bull. Facult. Pharm. (Cairo University) 36: 11–15.Google Scholar
  3. Arya P, Joseph R & Chou DTH (2002) Toward high-throughput synthesis of complex natural product-like compounds in the genomics and proteomics age. Chem. Biol. 9(2): 145–156.PubMedCrossRefGoogle Scholar
  4. Bindseil KU, Jakupovic J, Wolf D, Lavayre J, Leboul J & van der Pyl D (2001) Pure compound libraries; a new perspective for natural product based drug discovery. Drug Discovery Today 6(16): 840–847.PubMedCrossRefGoogle Scholar
  5. Breinbauer R, Manger M, Scheck M & Waldmann H (2002) Natural product guided compound library development. Curr. Med. Chem. 9(23): 2129–2145.PubMedGoogle Scholar
  6. Chan TF, Carvalho J, Riles L & Zheng, XFS (2000) A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc. Nat. Acad. Sci. USA 97(24): 13227–13232.PubMedCrossRefGoogle Scholar
  7. Corley DG & Durley RC (1994) Isolation and structure of harzianum A: a new trichothecene from Trichoderma harzianum. J. Nat. Prod. 57: 1484–1490.CrossRefGoogle Scholar
  8. Darvas F, Dorman G, Urge L, Szabo I, Ronai Z & Sasvari-Szekely M (2001) Combinatorial chemistry. Facing the challenge of chemical genomics. Pure Appl. Chem. 73(9): 1487–1498.Google Scholar
  9. Eldridge GR, Vervoort HC, Lee CM, Cremin PA, Williams CT, Hart SM, Goering MG, O’Neil-Johnson M & Zeng L (2002) High-throughput method for the production and analysis of large natural product libraries for drug discovery. Anal. Chem. 74(16): 3963–3971.PubMedCrossRefGoogle Scholar
  10. Foa R, Norton L & Seidman AD (1994) Taxol (paclitaxel): a novel anti-microtubule agent with remarkable anti-neoplastic activity. Int. J. Clin. & Lab. Res. 24(1): 6–14.Google Scholar
  11. Gold BG (1997) FK506 and the role of immunophilins in nerve regeneration. Mol. Neurobiol. 15(3): 285–306.PubMedGoogle Scholar
  12. Goodnow RA (2001) Current practices in generation of small molecule new leads. J. Cell. Biochem. Suppl. 37: 13–21.PubMedCrossRefGoogle Scholar
  13. Grabley S & Thiericke R (1999) Bioactive agents from natural sources: trends in discovery and application. Adv. Biochem. Eng. Biotechnol. 64: 101–154.PubMedGoogle Scholar
  14. Hacksell U, Nash N, Burstein ES, Piu F, Croston G & Brann MR (2002) Chemical genomics: massively parallel technologies for rapid lead identification and target validation. Cytotechnology 38(1–2): 3–10.CrossRefPubMedGoogle Scholar
  15. Hall DG, Manku S & Wang F (2001) Solution-and solid-phase strategies for the design, synthesis, and screening of libraries based on natural product templates: a comprehensive survey. J. Comb. Chem. 3(2): 125–150.PubMedCrossRefGoogle Scholar
  16. Heftmann E, Ko ST & Bennet RD (1966) Identification of estrone in pomegranate seeds. Phytochemistry 5: 1337–1340.CrossRefGoogle Scholar
  17. Hogenboom AC, de Boer AR, Derks RJE & Irth H (2001) Continuous-flow, on-line monitoring of biospecific interactions using electrospray mass spectrometry. Anal. Chem., 73(16): 3816–3823.PubMedCrossRefGoogle Scholar
  18. Hsieh YF, Gordon N, Regnier F, Afeyan N, Martin SA & Vella GJ (1997) Multidimensional chromatography coupled with mass spectrometry for target-based screening. Mol. Diversity 2: 189–196.CrossRefGoogle Scholar
  19. Huizing MT, Misser VHS, Pieters RC, Huinink WWT, Veenhof CHN, Vermorken JB, Pineod HM & Beijen JH (1995) Taxanes: A new class of antitumor agents. Cancer Investigation 13(4): 381–404.PubMedGoogle Scholar
  20. Illingworth DR (1994) Therapeutic use of lovastatin in the treatment of hypercholesterolemia. Clin. Ther. 16(1): 2–26.PubMedGoogle Scholar
  21. Ingkaninan K, Hazekamp A, de Best CM, Irth H, Tjaden UR, van der Heijden R, van der Greef J & Verpoorte R (2000) The application of HPLC with on-line coupled UV/MS-biochemical detection for isolation of an acetylcholinesterase inhibitor from narcissus ‘Sir Winston Churchill’. J. Natural Products 63(6): 803–806.CrossRefGoogle Scholar
  22. Ingkaninan K, de Best CM, van der Heijden R, Hofte AJ, Karabatak B, Irth H, Tjaden UR, van der Greef J & Verpoorte R. (2000) High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. J. Chromatogr. A 872(1–2): 61–73.PubMedCrossRefGoogle Scholar
  23. Jimeno JM (2002) A clinical armamentarium of marine-derived anti-cancer compounds. Anti-cancer Drugs Suppl 1: 515–519.Google Scholar
  24. Jodlbauer J, Zollner P & Lindner W (2000) Determination of zeranol, taleranol, zearalenone, alpha-and beta-zearalenol in urine and tissue by high-performance liquid chromatography-tandem mass spectrometry. Chromatographia 51: 681–687.Google Scholar
  25. Kaur S, McGuire L, Tang D, Dollinger G & Heubner V (1997) Affinity selection and mass spectrometry-based strategies to identify lead compounds in combinatorial libraries. J. Protein Chem. 16(5): 505–509.PubMedCrossRefGoogle Scholar
  26. Kim ND, Mehta R, Yu W, Neeman I, Livney T, Amichay A, Poirier D, Nicholls P, Kirby A, Jiang W, Mansel R, Ramachandran C, Rabi T, Kaplan B, Lansky E. (2002) Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast ancer. Breast Cancer Res. Treat. 71(3): 203–217.PubMedCrossRefGoogle Scholar
  27. Kuiper GGJM, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B. & Gustafsson JÄ (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139(10): 4252–4263.PubMedCrossRefGoogle Scholar
  28. Kurzer MS & Xu X (1997) Dietary phytoestrogens. Annual Rev. Nutr. 17: 353–381.CrossRefGoogle Scholar
  29. Lenz GR, Nash HM & Jindal S (2000) Chemical ligands, genomics and drug discovery. Drug Discovery Today April: 145–150.Google Scholar
  30. Li Z, Wang H, Li J, Zhang G & Goa C (2000) Basic and clinical study on the antithrombotic mechanism of glycosaminoglycan extracted from sea cucumber. Chin. Med. J. 113(8): 706–711.PubMedGoogle Scholar
  31. Lu RQ & Serrero G (1999) Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. J. Cell. Physiol. 179 (3): 297–304.PubMedCrossRefGoogle Scholar
  32. Lutz ESM, Irth H, Tjaden UR & van der Greef J (1997) Implementation of affinity solid-phases in continuous-flow biochemical detection. J. Chromatogr. A. 776(2): 169–178.CrossRefGoogle Scholar
  33. Lutz ESM, Irth H, Tjaden UR & van der Greef J (1996) Applying hollow fibres for separating free and bound label in continuous-flow immunochemical detection. J. Chromatogr. A 755(2): 179–187.PubMedCrossRefGoogle Scholar
  34. Maier MS, Roccatagliata AJ, Kuriss A, Chliadil H, Sildes AM, Rajoc CA & Damonte EB (2001) Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antarctic sea cucumber Staurocucumis liouvillei. J. Nat. Prod. 64(6): 732–736.PubMedCrossRefGoogle Scholar
  35. Moneam NMA, El Sharaky AS & Badreldin MM (1988) Oestrogen content of pomegranate seeds. J. Chromatogr. A 438: 438–442.CrossRefGoogle Scholar
  36. Nielsen J (2002) Combinatorial synthesis of natural products. Curr. Opin. Chem. Biol. 6(3): 297–305.PubMedCrossRefGoogle Scholar
  37. Onaga L (2001) Cashing in on nature’s pharmacy: Bioprospecting and protection of biodiversity could go hand in hand. EMBO Reports 2: 263–265.PubMedCrossRefGoogle Scholar
  38. Oosterkamp AJ, Irth H, Tjaden UR & van der Greef J (1994a) On-line coupling of liquid chromatography to biochemical assays based on fluorescent-labeled ligands. Anal. Chem. 66(23): 4295–4301.CrossRefGoogle Scholar
  39. Oosterkamp AJ, Irth H, Beth M, Unger KK, Tjaden UR & van der Greef J (1994b) Bioanalysis of digoxin and its metabolites using direct serum injection combined with liquid chromatography and on-line immunochemical detection. J. Chromatogr., B 653(1): 55–61.Google Scholar
  40. Oosterkamp AJ, Herraiz MTV, Irth H, Tjaden UR & van der Greef J (1996a) Reversed-phase liquid chromatography coupled online to receptor affinity detection based on the human estrogen receptor. Anal. Chem. 68(7): 1201–1206.PubMedCrossRefGoogle Scholar
  41. Oosterkamp AJ, Irth H, Heintz L, MarkoVarge G, Tjaden UR & van der Greef J (1996b) Simultaneous determination of crossreactive leukotrienes in biological matrices using on-line liquid chromatography immunochemical detection. Anal. Chem. 68(23): 4101–4106.PubMedCrossRefGoogle Scholar
  42. Oosterkamp AJ, Irth H, MarkoVarga g, Heintz L, Kjellstrom S & Alkner U (1997) Biomarker monitoring in pharmaceutical research: Measurement of leukotrienes and their metabolites using online liquid chromatography flow immuno ligand assay. J. Clin. Ligand Assay 20(1): 40–48.Google Scholar
  43. Oosterkamp AJ, van der Hoeven R, Glassgen W, Konig B, Tjaden UR, van der Greef, J & Irth H (1998) Gradient reversed-phase liquid chromatography coupled on-line to receptor-affinity detection based on the urokinase receptor. J. Chromatogr. B 715(1): 331–338.Google Scholar
  44. Rashid MA, Gustafson KR, Crouch RC, Groweiss A, Pannell LK, Van ON & Boyd NR (2002) Application of high-field NMR and cryogenic probe technologies in the structural elucidation of poecillastrin a, a new antitumor macrolide lactam from the sponge Poecillastra species. Org. Lett. 4(19): 3293–3296.PubMedCrossRefGoogle Scholar
  45. Ruhlmann A & Nordheim A (1997) Effects of the immunosuppressive drugs CsA and FK506 on intracellular signalling and gene regulation. Immunobiology 198(1–3): 192–206.PubMedGoogle Scholar
  46. Setchell KDR & Cassidy A (1999) Dietary isoflavones: Biological effects and relevance to human health. J. Nutr. 129: 758S-767S.PubMedGoogle Scholar
  47. Schobel U, Frenay M, van Elswijk D.A, McAndrews JM, Long KR, Olson LM, Bobzin SC & Irth H (2001) High resolution screening of plant natural product extracts for estrogen receptor alpha and beta binding activity using an online HPLC-MS biochemical detection system. J. Biomol. Screen. 6: 291–303.PubMedGoogle Scholar
  48. Schwartsmann G, Brondari da Rocha A, Berlinck RG & Jimeno J (2001) Marine organisms as a source of new anticancer agents. Lancet Oncol. 2(4): 221–225.PubMedCrossRefGoogle Scholar
  49. Shigematsu N (1997) J. Mass. Spectrom. Soc. Jpn. 45: 295–300.Google Scholar
  50. Strege MA (1999) High-performance liquid chromatographicelectrospray ionization mass spectrometric analyses for the integration of natural products with modern high-throughput screening. J. Chromatogr. B725: 67–72.Google Scholar
  51. Strobel GA (2002) Microbial gifts from rain forests. Can. J. Plant Pathol. 24(1): 14–20.CrossRefGoogle Scholar
  52. van Elswijk DA, Tjaden UR, van der Greef J & Irth H (2001) Mass Spectrometry-based bioassay for the screening of soluble orphan receptors. Int. J. Mass Spectrom. 210/211: 625–636.Google Scholar
  53. Vidal M & Endoh H (1999) Prospects for drug screening using the reverse two-hybrid system. Trends Biotechnol. 17(9): 374–381.PubMedCrossRefGoogle Scholar
  54. Watterson DM, Haiech J & Eldik LJ (2002a) Discovery of new chemical classes of synthetic ligands that suppress neuroinflammatory responses. J. Mol. Neurosci. 19(1–2): 89–93.PubMedGoogle Scholar
  55. Watterson DM, Zasadzki M, Mirzoeva S, Guo L, Haiech J & van Eldik, LJ (2002b) Development of a new chemical class of antineuroinflammatory compounds by use of chemical genomics and in-parallel synthesis approach. Faseb J. 16(4): A190-A190.Google Scholar
  56. Weber L (2000) High-diversity combinatorial libraries. Curr. Opin. Chem. Biol. 4(3): 295–302.PubMedCrossRefGoogle Scholar
  57. Willson TM, Jones SA, Moore JT & Kliewer SA (2001) Chemical genomics: functional analysis of orphan nuclear receptors in the regulation of bile acid metabolism. Med. Res. Rev. 21(6): 513–522.PubMedCrossRefGoogle Scholar
  58. Wipf P, Reeves JT, Balachandran R, Giuliano KA, Hamel E & Day BW (2000) Synthesis and biological evaluation of a focused mixture library of analogues of the antimitotic marine natural product curacin A. J. Am. Chem. Soc. 122(3): 9391–9395.CrossRefGoogle Scholar
  59. Wolfender JL, Rodriguez S & Hostettmann K (1998) J. Chromatogr A 794: 299–316.CrossRefGoogle Scholar
  60. Wolfender JL, Rodriguez S, Hostettmann K & Wagner-Redeker W (1995) J. Mass Spectrom. Suppl S.: S35-S36.Google Scholar
  61. Zanders ED, Bailey, DS & Dean, PM (2002) Probes for chemical genomics by design. Drug Discovery Today 7(13): 711–718.PubMedCrossRefGoogle Scholar
  62. Zheng XFS & Chan TF (2002) Chemical genomics in the global study of protein functions Drug Discovery Today 7(3): 197–205.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • D.A. van Elswijk
    • 1
  • H. Irth
    • 1
    • 2
  1. 1.Kiadis B.V.The Netherlands
  2. 2.Division of analytical chemistry and applied spectroscopic methods, VU AmsterdamAmsterdamThe Netherlands

Personalised recommendations