Advertisement

Molecular Biology

, Volume 37, Issue 5, pp 723–732 | Cite as

Search for Conserved Secondary Structures of RNA

  • K. Yu. Gorbunov
  • A. A. Mironov
  • V. A. Lyubetsky
Article

Abstract

We suggest a new algorithm to search a given set of the RNA sequences for conserved secondary structures. The algorithm is based on alignment of the sequences for potential helical strands. This procedure can be used to search for new structured RNAs and new regulatory elements. It is efficient for the genome-scale analysis. The results of various tests run with this algorithm are shown.

RNA secondary structure algorithm of dynamic programming tRNA structure RFN structure regulation of transcription regulation of translation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Vitreschak A.G., Rodionov D.A., Mironov A.A., Gelfand M.S. 2002. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res. 30, 3141–3151.Google Scholar
  2. 2.
    Rodionov D.A., Vitreschak A.G., Mironov A.A., Gelfand M.S. 2002. Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. J. Biol. Chem. 277, 48949–48959.Google Scholar
  3. 3.
    Vitreschak A.G. Computer analysis of regulation of genes, encoding aminoacyl-tRNA synthetases and amino acid biosynthetic proteins in Gram positive bacteria: T-box RNA regulatory element. Prediction of regulation of new genes, including amino acid transporters. In The Proceedings of International School “Artificial Intelligence and Heuristic Methods for Bioinformatics.” 2001, October 1-11. Italy, San-Miniato.63.Google Scholar
  4. 4.
    Grundy F.J., Henkin T.M. 1998. The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in grampositive bacteria. Mol. Microbiol. 30, 737–749.Google Scholar
  5. 5.
    Tumanyan V.G., Sotnikova L.E., Kholopov A.E. 1966. On identification of secondary RNA structure from the nucleotide sequence. Dokl. Akad. Nauk SSSR. 166, 1465–1468.Google Scholar
  6. 6.
    Nussinov R., Jacobson A.B. 1980. Fast Algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci. USA. 77, 6309–6313.Google Scholar
  7. 7.
    Zuker M., Stiegler P. 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148.Google Scholar
  8. 8.
    Zuker M. 1989. Computer prediction of RNA structure. Meth. Enzymol. 180, 262–288.Google Scholar
  9. 9.
    Zuker M. 1991. Suboptimal sequence alignment in molecular biology. Alignment with error analysis. J. Mol. Biol. 221, 403–420.Google Scholar
  10. 10.
    Mironov A.A., Dyakonova L.P., Kister A.E. 1985. A theoretical analysis of the kinetics of RNA secondary structure formation. J. Biomol. Struct. Dynam. 2, 953–962.Google Scholar
  11. 11.
    Mironov A.A., Kister A.E. 1985. Theoretical analysis of structural rearrangements in the process of RNA secondary structure formation. Mol. Biol.23, 61–71.Google Scholar
  12. 12.
    Mironov A.A., Lebedev V.F. 1993. A kinetic model of RNA folding. Biosystems. 30, 49–56.Google Scholar
  13. 13.
    Woese C.R., Magrum L.J., Gupta R., Siegel R.B., Stahl D.A., Kop J., Crawford N., Brosius J., Gutell R., Hogan J.J., Noller H.F. 1980. Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res. 8, 2275–2293.Google Scholar
  14. 14.
    Tahi F., Gouy M., Regnier M. 2002. Related Articles, Books, Link Out Automatic RNA secondary structure prediction with a comparative approach. Computer Chem. 26, 521–530.Google Scholar
  15. 15.
    Hofacker I.L., Fekete M., Stadler P.F. 2002. Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319, 1059–1066.Google Scholar
  16. 16.
    Gorodkin J., Stricklin S.L., Stormo G.D. 2001. Discovering common stem-loop motifs in unaligned RNA sequences. Nucleic Acids Res. 29, 2135–2144.Google Scholar
  17. 17.
    Akmaev V.R., Kelley S.T., Stormo G.D. 2000. Phylogenetically enhanced statistical tools for RNA structure prediction. Bioinformatics. 16, 501–512.Google Scholar
  18. 18.
    Chen J.H., Le S.Y., Maizel J.V. 2000. Prediction of common secondary structures of RNAs: a genetic algorithm approach. Nucleic Acids Res. 28, 991–999.Google Scholar
  19. 19.
    Titov I.I., Ivanisenko V.A., Kolchanov N.A. 2000. FITNESS-A WWW-resource for RNA folding simulation based on genetic algorithm with local optimization. Comput. Technol. 5, 48–56.Google Scholar
  20. 20.
    Mironov A.A., Diakonova L.P., Kister A.E. 1984. Theoretical analysis of secondary RNA structure formation kinetics. Dokl. Akad. Nauk SSSR. 259, 725–728.Google Scholar
  21. 21.
    Gorbunov K.Yu., Lyubetsky V.A. An algorithm for searching common secondary structures in a set of RNA sequences. In The Proceedings of the third international conference of bioinformatics of genome regulation and structure, BGRS'2002. 2002, July 14-20, Novosibirsk, Russia. 3, 21–23.Google Scholar
  22. 22.
    Gorbunov K.Yu, Lyubetskaya E.V., Lyubetsky V.A. 2001. On two algorithms to search for alternative secondary RNA structure. Informatsionnye Protsessy. 1, 178–187. (http://www.jip.ru/).Google Scholar
  23. 23.
    Gorbunov K.Yu., Lyubetsky V.A. 2002. An algorithm to search for conserved secondary RNA structures within a set of RNA fragments. Informatsionnye Protsessy. 2, 55–58. (http://www.jip.ru/).Google Scholar
  24. 24.
    Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • K. Yu. Gorbunov
    • 1
  • A. A. Mironov
    • 2
  • V. A. Lyubetsky
    • 1
  1. 1.Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.State Research Center GosNIIGenetikaMoscowRussia

Personalised recommendations