, Volume 119, Issue 2, pp 155–165

Random Amplified Polymorphic DNA Diversity among Surface and Subterranean Populations of Asellus aquaticus (Crustacea: Isopoda)

  • R. Verovnik
  • B. Sket
  • S. Prevorčnik
  • P. Trontelj


The ecological and evolutionary processes leading to isolation and adaptation of cave animals compared to their surface ancestors are not yet unequivocally understood. In this study the genetic relations of four cave and three surface population of the freshwater crustacean Asellus aquaticus in the Karst region of SW Slovenia and NE Italy were assessed using RAPDs as genetic markers. The results suggest that specialized populations from two caves invaded their subterranean habitat independently, and that their morphological similarity is a result of convergent evolution. Another, less specialized cave population seems to originate from a later colonization of a cave system already inhabited by a more specialized population, but the two populations do not interbreed. This series of temporally and spatially independent invasions has generated a diversity hotspot of non-interbreeding populations of a ubiquitous freshwatercrustacean, which is uniform over most of its range. Genetic variability estimated by the percentage of polymorphic RAPD fragments was similar (86–91%) in most cave and surface populations. Substantially lower values (as low as 49%) were found in two cave populations affected by heavy pollution. Two a priori groupings of populations, traditional subspecies and hydrologically connected groups, were rejected as not significant by means of nested analysis of molecular variance (AMOVA). On the other hand, groupings revealed by UPGMA clustering displayed a significant component of among-group variance. An analysis of gene flow between populations using estimated migration rates confirmed these findings.

Asellus aquaticus cave invasion genetic diversity RAPD speciation subterranean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayres, D.R. & F.J. Ryan, 1997. The clonal and population structure of a rare endemic plant, Wyethia reticulata (Asteraceae): allozyme and RAPD analysis. Mol. Ecol. 6: 761–772.Google Scholar
  2. Barr, T.C., 1968. Cave ecology and evolution of troglobites. Evol. Biol. 2: 35–102.Google Scholar
  3. Black, I.V.B.W., 1997. FORTRAN program to estimate F (ST) and effective migration rates among subpopulations using RAPDPCR files. Colorado State University, Ft. Colins.Google Scholar
  4. Borowsky, R.L. & C. Vidthayanon, 2001. Nucleotide diversity in populations of balitorid cave fishes from Thailand. Mol. Ecol. 10: 2799–2805.Google Scholar
  5. Caccone, A., G. Allegrucci, C. Fortunato & V. Sbordoni, 1997. Genetic differentiation within the European Sea Bass (D. labrax) as revealed by RAPD-PCR assay. J. Hered. 88: 316–324.Google Scholar
  6. Chapco, W., N.W. Ashton, R.K.B. Martel & N. Antonishyn, 1992. A feasibility study of random amplified polymorphic DNA in the population genetics and systematics of grasshoppers. Genome 35: 569–574.Google Scholar
  7. Clark, A.G. & C.M.S. Lanigan, 1993. Prospects for estimating nucleotide divergence with RAPDs. Mol. Biol. Evol. 10(5): 1096–1111.Google Scholar
  8. Culver, D.C., 1982. Cave Life. Harvard University Press, Cambridge.Google Scholar
  9. Culver, D.C., T.C. Kane & D.W. Fong, 1995. Adaptation and Natural Selection in Caves: The Evolution of Gammarus minus. Harvard University Press, London.Google Scholar
  10. De Wolf, D., T. Backeljau & R. Verhagen, 1998. Congruence between allozyme and RAPD data in assessing macrogeographical genetic variation in the periwinkel Littorina striata (Mollusca, Gastropoda). Heredity 81: 486–492.Google Scholar
  11. Excoffier, L., 1995.WINAMOVA 1.55. LGB, University of Geneva.Google Scholar
  12. Excoffier, L., P.E. Smouse & J.M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.Google Scholar
  13. Felsenstein, J., 1993. PHYLIP (Phylogeny inference package), Version 3.57c. Department of Genetics, University of Washington, Seattle.Google Scholar
  14. Gabrielsen, T.M., K. Bachmann, K.S. Jakobsen & C. Brochmann, 1997. Glacial survival does not matter: RAPD phylogeography of Nordic Saxifraga oppositifolia. Mol. Ecol. 6: 831–642.Google Scholar
  15. Goodwin, S.B., D.E. Legard, C.D. Smart, M. Levy & W.E. Fry, 1999. Gene flow analysis of molecular markers confirms that Phytophtora mirabilis and P. infestans are separate species. Mycologia 91(5): 796–810.Google Scholar
  16. Henry, J.P. & G. Magniez, 1983. Introduction pratique a la systematique des organismes des eaux continentales francaises, 4. Crustaces Isopodes (Principalment Asellotes). Bull. Soc. Linn. Lyon. 52: 319–357.Google Scholar
  17. Howarth, F.G., 1980. The zoogeography of specialized cave animals: a bioclimatic model. Evolution 34: 394–406.Google Scholar
  18. Huff, D.R., R. Peakall & P.E. Smouse, 1993. RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë dactyloides (Nutt.) Engelm.]. Theor. Appl. Genet. 86: 119–132.Google Scholar
  19. Jeannel, R., 1923. Sur l'evolution des Coleopteres aveugles et le peuplement des grottes dan les monts du Bihor, en Transylvanie. C. R. Acad. Sci. Paris 176: 1670–1673.Google Scholar
  20. Kazan, K., J.M. Manners & D.F. Cameron, 1993. Genetic relationships and variation in the Stylosanthes guianensis species complex assessed by RAPD. Genome 36: 43–49.Google Scholar
  21. Kosswig, C. & L. Kosswig, 1940. Die variabilität bei Asellus aquaticus unter besonderer Berucksichtigung der Variabilität in isolierten unter-und aberirdische Population. Rev. Fac. Sci. (Istanbul) Series B 5: 1–55.Google Scholar
  22. Lowe, A.J., A.C.M. Gillies, J. Wilson & K. Dawson, 2000. Conservation genetics of bush mango from central/west Africa: implications from random amplified polymorphic DNA analysis. Mol. Ecol. 9: 831–841.Google Scholar
  23. Lynch, M. & B.G. Milligan, 1994. Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3: 91–100.Google Scholar
  24. Nei, M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.Google Scholar
  25. Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.Google Scholar
  26. Nei, M. & W.H. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. P. Natl. Acad. Sci. USA 76: 5269–5273.Google Scholar
  27. Racovitza, E.G., 1925. Notes sur les Isopodes: morphologie at phylogénie des Antennes II. Arch. Zool. Exp. Gén. 63: 533–622.Google Scholar
  28. Rohlf, J.F., 1994. NTSYS. Numerical Taxonomy and Multivariate Analysis System. Exeter Software, New York.Google Scholar
  29. Rouch, R. & D.L. Danielopol, 1987. L'origine de la faune aquatique souterraine, entre le paradigme du refuge et le modèle de la colonisation active. Stygologia 3(4): 345–372.Google Scholar
  30. Sbordoni, V., 1980. Present status of knowledges on the genetic variability of cave animals. Mem. Biospeol. 7: 17–18.Google Scholar
  31. Sbordoni, V., A. Caccone, E. DeMatthaeis & M. Cobolli-Sbordoni, 1980. Biochemical divergence between cavernicolous and marine Sphaeromidae and the Mediterranean salinity crisis. Experientia 36: 48–50.Google Scholar
  32. Sket, B., 1969. Ueber einige mit der Evolution der Hoehlentiere verbundene Probleme. Actes du IVe Congres International de Speleologie en Yougoslavie 1965 4–5: 225–230.Google Scholar
  33. Sket, B., 1994. Distribution of Asellus aquaticus (Crustacea: Isopoda: Asellidae) and its hypogean populations at different geographic scales, with a note on Proasellus istrianus. Hydrobiologia 287: 39–47.Google Scholar
  34. Sket, B., 1997. Distribution of Proteus (Amphibia: Urodela: Proteidae) and its possible explanation. J. Biogeogr. 24: 263–280.Google Scholar
  35. Sket, B., 1999. High biodiversity in hypogean waters and its endangerment-the situation in Slovenia, Dinaric karst, and Europe. Crustaceana 72(8): 767–779.Google Scholar
  36. Sket, B. & F. Velkovrh, 1981. Phreatische Fauna in Ljubljansko polje (Ljubljana-Ebene, Jugoslavien)-ihre ökologische Vertailung und zoogeograpische Beziehungen. Int. J. Speleol. 11: 105–121.Google Scholar
  37. Stammer, H.J., 1932. Zur Kenntnis der Verbreitung und Systematik der Gattung Asellus, insbesondere der mitteleuropaeische Arten (Isopoda). Zool. Anz. 99: 113–131.Google Scholar
  38. Thormann, C.E., M.E. Ferreira, L.E.A. Camargo, J.G. Tivang & T.C. Osborn, 1994. Comparison of RFLP and RAPD markers to estimate genetic relationship within and among cruciferous species. Theor. Appl. Genet. 88: 973–980.Google Scholar
  39. Turk, S., B. Sket & S. Serban, 1996. Comparison between some epigean and hypogean populations of Asellus aquaticus (Crustacea: Isopoda: Asellidae). Hydrobiologia 337: 161–170.Google Scholar
  40. Verovnik, R., P. Trontelj & B. Sket, 1999. Genetic differentiation and species status within the snail leech Glossiphonia complanata aggregate (Hirudinea: Glossiphoniidae) revealed by RAPD analysis. Arch. Hydrobiol. 144(3): 327–338.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • R. Verovnik
    • 1
  • B. Sket
    • 1
  • S. Prevorčnik
    • 1
  • P. Trontelj
    • 1
  1. 1.Biotechnical Faculty, Department of BiologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations