Journal of Global Optimization

, Volume 27, Issue 4, pp 427–446 | Cite as

Numerical Comparison of Some Penalty-Based Constraint Handling Techniques in Genetic Algorithms

  • Kaisa Miettinen
  • Marko M. Mäkelä
  • Jari Toivanen

Abstract

We study five penalty function-based constraint handling techniques to be used with genetic algorithms in global optimization. Three of them, the method of superiority of feasible points, the method of parameter free penalties and the method of adaptive penalties have already been considered in the literature. In addition, we introduce two new modifications of these methods. We compare all the five methods numerically in 33 test problems and report and analyze the results obtained in terms of accuracy, efficiency and reliability. The method of adaptive penalties turned out to be most efficient while the method of parameter free penalties was the most reliable.

constrained optimization genetic algorithms global optimization penalty functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adeli H. and Cheng N.-T. (1994), Augmented Lagrangian genetic algorithm for structural optimization, Journal of Aerospace Engineering 7(1) 104–118.Google Scholar
  2. 2.
    Bazaraa M. S., Sherali H. D. and Shetty C. M. (1993). Nonlinear Programming: Theory and Algorithms. 2nd edition, John Wiley & Sons.Google Scholar
  3. 3.
    Ben Hamida S. and Schoenauer M. (2000). An adaptive algorithm for constrained optimization problems. In: Schoenauer M., Deb K., Rudolph G., Yao X., Lutton E., Merelo J. J. and H.-P. Schwefel (eds.) Proceedings of the 6th Conference on Parallel Problems Solving from Nature. Springer, Berlin, 529–539.Google Scholar
  4. 4.
    Camponogara E. and Talukdar S. N. (1997). A Genetic Algorithm for Constrained and Multiobjective Optimization. In: Alander J. (ed.), Proceedings of the 3rd Nordic Workshop on Genetic Algorithms and Their Applications. University of Vaasa, 49–61.Google Scholar
  5. 5.
    Coello Coello C. A. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art, Computer Methods in Applied Mechanics and Engineering 191(11–12), 1245–1287.Google Scholar
  6. 6.
    Coit D. W. and Smith A. E. (1996). Penalty guided genetic search for reliability design optimization, International Journal of Computers and Industrial Engineering 30(4), 895–904.Google Scholar
  7. 7.
    Deb K. (2000). An efficient constraint handling method for genetic algorithms, Computer Methods in Applied Mechanics and Engineering, 186, 311–338.Google Scholar
  8. 8.
    Floudas C. A. and Pardalos P. M. (1987). A collection of test problems for constrained global optimization algorithms. Springer, Berlin.Google Scholar
  9. 9.
    Gen M. and Cheng R. (1996). A survey of penalty techniques in genetic algorithms. In: Fukuda, T. and Furuhashi, T. (eds.), Proceedings of the 1996 International Conference on Evolutionary Computation. IEEE, 804–809.Google Scholar
  10. 10.
    Goldberg D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Publishing Company, Inc., Reading, MA.Google Scholar
  11. 11.
    Hadj-Alouane A. B. and Bean J. C. (1997). A genetic algorithm for the multiple-choice integer program, Operations Research, 45(1), 92–101.Google Scholar
  12. 12.
    Homaifar A., Qi C. X. and Lai S. H. (1994). Constrained optimization via genetic algorithms, Simulation, 62(4), 242–254.Google Scholar
  13. 13.
    Horst R. and Pardalos P. M. (1995). Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht.Google Scholar
  14. 14.
    Kazarlis S. and Petridis V. (1998). Varying fitness functions in genetic algorithms: Studying the rate of increase of the dynamic penalty terms. In: Eiben A. E., Bäck T., Schoenauer M. and Schwefel, H.-P. (eds.), Proceedings of the parallel problem solving from nature. Springer, Berlin, 211–220.Google Scholar
  15. 15.
    Kim J.-H. and Myung H. (1997). Evolutionary programming techniques for constrained optimization problems, IEEE Transactions on Evolutionary Computation, 1(2), 129–140.Google Scholar
  16. 16.
    Le Riche R. G., Knopf-Lenoir C. and Haftka R. T. (1995). A segregated genetic algorithm for constrained structural optimization. In: Eshelman L.J. (ed.), Proceedings of the Sixth International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, 558–565.Google Scholar
  17. 17.
    Mäkinen R. A. E., Périaux J. and Toivanen J. (1999). Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms, International Journal for Numerical Methods in Fluids. 30(2), 149–159.Google Scholar
  18. 18.
    Michalewicz Z. (1995). Genetic algorithms, numerical optimization, and constraints. In: Eshelman L. J. (ed.), Proceedings of the Sixth International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, 151–158.Google Scholar
  19. 19.
    Michalewicz Z. (1995). A survey of constraint handling techniques in evolutionary computation methods. In: McDonnell J. R., Reynolds R. G. and Fogel D. B. (eds.), Proceedings of the 4th Annual Conference on Evolutionary Programming. MIT Press, 135–155.Google Scholar
  20. 20.
    Michalewicz Z. and Attia N. F. (1994). Evolutionary optimization of constrained problems. In: Sebald A.V. and Fogel L.J. (eds.) Proceedings of the 3rd Annual Conference on Evolutionary Programming. World Scientific, 98–108.Google Scholar
  21. 21.
    Michalewicz Z., Logan T. D. and Swaminathan S. (1994). Evolutionary operators for continuous convex parameter spaces. In: Sebald A. V. and Fogel L. J. (eds.), Proceedings of the 3rd Annual Conference on Evolutionary Programming. World Scientific, 84–97.Google Scholar
  22. 22.
    Michalewicz Z., Nazhiyath G. and Michalewicz M. (1996). A note on usefulness of geometrical crossover for numerical optimization problems. In: Angeline P. J. and Bäck T. (eds.), Proceedings of the 5th Annual Conference on Evolutionary Programming. MIT Press, Cambridge, MA, 305–312.Google Scholar
  23. 23.
    Michalewicz Z. and Schoenauer M. (1996). Evolutionary algorithms for constrained parameter optimization problems, Evolutionary Computation, 4(1), 1–32.Google Scholar
  24. 24.
    Miettinen K. and Mäkelä M. M. (1995). Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS, Optimization, 34(3), 231–246.Google Scholar
  25. 25.
    Miettinen K. and Mäkelä M.M. (2000). Interactive multiobjective optimization system WWWNIMBUS on the Internet, Computers & Operations Research, 27(7–8), 709–723.Google Scholar
  26. 26.
    Miettinen K., Mäkelä M. M., Neittaanmäki P. and Périaux J. 1999 (eds). Evolutionary algorithms in engineering and computer science. John Wiley & Sons, New York.Google Scholar
  27. 27.
    Miettinen K., Mäkelä M. M. and Toivanen J. (1999) (eds). Proceedings of EUROGEN99–short course on evolutionary algorithms in engineering and computer science, Reports of the Department of Mathematical Information Technology, Series A. Collections, No. A 2/1999. University of Jyväskylä.Google Scholar
  28. 28.
    Powell D. and Skolnick M. M. (1993). Using genetic algorithms in engineering design optimization with non-linear constraints. In: Forrest S. (ed.), Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, 424–431.Google Scholar
  29. 29.
    Runarsson T. P. and Yao X. (2000). Stochastic ranking for constrained evolutionary optimization, IEEE Transactions on Evolutionary Computation, 4(3), 284–294.Google Scholar
  30. 30.
    Schoenauer M. and Michalewicz Z. (1997). Boundary operators for constrained parameter optimization problems. In: Bäck T. (ed.), Proceedings of the Seventh International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, 322–329.Google Scholar
  31. 31.
    Schoenauer M. and Xanthakis S. (1993). Constrained GA optimization. In: Forrest S. (ed.), Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, 573–580.Google Scholar
  32. 32.
    Smith A. E. and Tate D. M. (1993). Genetic optimization using a penalty function. In: Forrest S. (ed.), Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, 499–505.Google Scholar
  33. 33.
    Smith R. L. (1984). Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions, Operations Research, 32(6), 1296–1308.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Kaisa Miettinen
    • 1
  • Marko M. Mäkelä
    • 1
  • Jari Toivanen
    • 1
  1. 1.Department of Mathematical Information TechnologyUniversity of Jyväskylä, Finland

Personalised recommendations