Molecular and Cellular Biochemistry

, Volume 253, Issue 1–2, pp 223–231 | Cite as

Recent advances in molecular genetics of glaucoma

  • Kunal Ray
  • Arijit Mukhopadhyay
  • Moulinath Acharya


Glaucoma represents a heterogeneous group of optic neuropathies, with different genetic bases. It can affect all ages generally with a rise in intra-ocular pressure. Three major types of glaucoma have been reported: primary open angle glaucoma (POAG), primary acute closed angle glaucoma (PACG) and primary congenital glaucoma (PCG), as well as a few others associated with developmental abnormalities. In recent years impressive progress has been made in the molecular genetic studies of POAG and PCG. These include the discovery of three genes – Myocilin, Optineurin and CYP1B1 – defects in which results in Mendelian transmission of glaucoma. Identification of single nucleotide polymorphisms in multiple other genes that are associated with glaucoma and alteration of drug sensitivity are enriching our knowledge regarding the complex nature of the disease. This review attempts to present the recent progress made in the molecular genetics of glaucoma.

complex disease CYP1B1 glucoma myocilin MYOC optineurin POAG protein-fusion TIGR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Quigley HA: Number of people with glaucoma worldwide. Br J Ophthalmol 80: 389-393, 1996Google Scholar
  2. 2.
    Sarfarazi M: Recent advances in molecular genetics of glaucomas. Hum Mol Genet 6: 1667-1677, 1997Google Scholar
  3. 3.
    Shields M, Ritch R, Krupin T: Classification of the glaucomas. In: R. Ritch, B.M. Shields, T. Krupin (eds). The Glaucomas. Mosby, St. Louis, 1996, pp 717-725Google Scholar
  4. 4.
    Quigley HA: Open-angle glaucoma. N Engl J Med 328: 1097-1106, 1993Google Scholar
  5. 5.
    Wiggs JL, Allingham RR, Vollrath D, Jones KH, De La Paz M, Kern J, Patterson K, Babb VL, Del Bono EA, Broomer BW, Pericak-Vance MA, Haines JL: Prevalence of mutations in TIGR/Myocilin in patients with adult and juvenile primary open-angle glaucoma (letter). Am J Hum Genet 63: 1549-1552, 1998Google Scholar
  6. 6.
    Sheffield VC, Stone EM, Alward WL, Drack AV, Johnson AT, Streb LM, Nichols BE: Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nat Genet 4: 47-50, 1993Google Scholar
  7. 7.
    Stoilova D, Child A, Trifan OC, Crick RP, Coakes RL, Sarfarazi M: Localization of a locus (GLC1B) for adult-onset primary open angle glaucoma to the 2cen-q13 region. Genomics 36: 142-150, 1996Google Scholar
  8. 8.
    Wirtz MK, Samples JR, Kramer PL, Rust K, Topinka JR, Yount J, Koler RD, Acott TS: Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q. Am J Hum Genet 60: 296-304, 1997Google Scholar
  9. 9.
    Trifan OC, Traboulsi EI, Stoilova D, Alozie I, Nguyen R, Raja S, Sarfarazi M: A third locus (GLC1D) for adult-onset primary open-angle glaucoma maps to the 8q23 region. Am J Ophthalmol 126: 17-28, 1998Google Scholar
  10. 10.
    Wirtz MK, Samples JR, Rust K, Lie J, Nordling L, Schilling K, Acott TS, Kramer PL: GLC1F, a new primary open-angle glaucoma locus, maps to 7q35-q36. Arch Ophthalmol 117: 237-241, 1999Google Scholar
  11. 11.
    Sarfarazi M, Child A, Stoilova D, Brice G, Desai T, Trifan OC, Poinoosawmy D, Crick RP: Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region. Am J Hum Genet 62: 641-652, 1998Google Scholar
  12. 12.
    Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, Nishimura D, Clark AF, Nystuen A, Nichols BE, Mackey DA, Ritch R, Kalenak JW, Craven ER, Sheffield VC: Identification of a gene that causes primary open angle glaucoma. Science 275: 668-670, 1997Google Scholar
  13. 13.
    Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, Heon E, Krupin T, Ritch R, Kreutzer D, Crick RP, Sarfarazi M: Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295: 1077-1079, 2002Google Scholar
  14. 14.
    Polansky JR, Fauss DJ, Chen P, Chen H, Lutjen-Drecoll E, Johnson D, Kurtz RM, Ma ZD, Bloom E, Nguyen TD: Cellular pharmacology and molecular biology of the trabecular meshwork inducible glucocorticoid response gene product. Ophthalmologica 211: 126-139, 1997Google Scholar
  15. 15.
    Nguyen TD, Chen P, Huang WD, Chen H, Johnson D, Polansky JR: Gene structure and properties of TIGR, an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J Biol Chem 273: 6341-6350, 1998Google Scholar
  16. 16.
    Fingert JH, Ying L, Swiderski RE, Nystuen AM, Arbour NC, Alward WL, Sheffield VC, Stone EM: Characterization and comparison of the human and mouse GLC1A glaucoma genes. Genome Res 8: 377-384, 1998Google Scholar
  17. 17.
    Snyder DA, Rivers AM, Yokoe H, Menco BP, Anholt RR: Olfactomedin: Purification, characterization, and localization of a novel olfactory glycoprotein. Biochemistry 30: 9143-9153, 1991Google Scholar
  18. 18.
    Johnson DH: Myocilin and glaucoma: A TIGR by the tail? Arch Ophthalmol 118: 974-978, 2000Google Scholar
  19. 19.
    Tomarev SI, Tamm ER, Chang B: Characterization of the mouse Myoc/Tigr gene. Biochem Biophys Res Commun 245: 887-893, 1998Google Scholar
  20. 20.
    Mukhopadhyay A, Gupta A, Mukherjee S, Chaudhuri K, Ray K: Did myocilin evolve from two different primordial proteins? Mol Vis 8: 271-279, 2002Google Scholar
  21. 21.
    Torrado M, Trivedi R, Zinovieva R, Karavanova I, Tomarev SI: Optimedin: A novel olfactomedin-related protein that interacts with myocilin. Hum Mol Genet 11: 1291-1301, 2002Google Scholar
  22. 22.
    Moreno TA, Bronner-Fraser M: The secreted glycoprotein Noelin-1 promotes neurogenesis in Xenopus. Dev Biol 240: 340-360, 2001Google Scholar
  23. 23.
    Fingert JH, Heon E, Liebmann JM, Yamamoto T, Craig JE, Rait J, Kawase K, Hoh ST, Buys YM, Dickinson J, Hockey RR, Williams-Lyn D, Trope G, Kitazawa Y, Ritch R, Mackey DA, Alward WL, Sheffield VC, Stone EM: Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum Mol Genet 8: 899-905, 1999Google Scholar
  24. 24.
    Adam MF, Belmouden A, Binisti P, Brezin AP, Valtot F, Bechetoille A, Dascotte JC, Copin B, Gomez L, Chaventre A, Bach JF, Garchon HJ: Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology domain of TIGR in familial open-angle glaucoma. Hum Mol Genet 6: 2091-2097, 1997Google Scholar
  25. 25.
    Suzuki Y, Shirato S, Taniguchi F, Ohara K, Nishimaki K, Ohta S: Mutations in the TIGR gene in familial primary open-angle glaucoma in Japan (letter). Am J Hum Genet 61: 1202-1204, 1997Google Scholar
  26. 26.
    Stoilova D, Child A, Brice G, Desai T, Barsoum-Homsy M, Ozdemir N, Chevrette L, Adam MF, Garchon HJ, Pitts Crick R, Sarfarazi M: Novel TIGR/MYOC mutations in families with juvenile onset primary open angle glaucoma. J Med Genet 35: 989-992, 1998Google Scholar
  27. 27.
    Stoilova D, Child A, Brice G, Crick RP, Fleck BW, Sarfarazi M: Identification of a new 'TIGR' mutation in a family with juvenile-onset primary open angle glaucoma. Ophthalmic Genet 18: 109-118, 1997Google Scholar
  28. 28.
    Alward WL, Fingert JH, Coote MA, Johnson AT, Lerner SF, Junqua D, Durcan FJ, McCartney PJ, Mackey DA, Sheffield VC, Stone EM: Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A). N Engl J Med 338: 1022-1027, 1998Google Scholar
  29. 29.
    Angius A, Pisano M, Sanca A, Casu G et al.: Molecular basis of open-angle glaucoma in Italy. Acta Ophthalmol Scand 227(suppl): 16-17, 1998Google Scholar
  30. 30.
    Brezin AP, Adam MF, Belmouden A, Lureau MA, Chaventre A, Copin B, Gomez L, De Dinechin SD, Berkani M, Valtot F, Rouland JF, Dascotte JC, Bach JF, Garchon HJ: Founder effect in GLC1A-linked familial open-angle glaucoma in Northern France. Am J Med Genet 76: 438-445, 1998Google Scholar
  31. 31.
    Mansergh FC, Kenna PF, Ayuso C, Kiang AS, Humphries P, Farrar GJ: Novel mutations in the TIGR gene in early and late onset open angle glaucoma. Hum Mutat 11: 244-251, 1998Google Scholar
  32. 32.
    Richards JE, Ritch R, Lichter PR, Rozsa FW, Stringham HM, Caronia RM, Johnson D, Abundo GP, Willcockson J, Downs CA, Thompson DA, Musarella MA, Gupta N, Othman MI, Torrez DM, Herman SB, Wong DJ, Higashi M, Boehnke M: Novel trabecular meshwork inducible glucocorticoid response mutation in an eight-generation juvenile-onset primary open-angle glaucoma pedigree. Ophthalmology 105: 1698-1707, 1998Google Scholar
  33. 33.
    Yoon SJ, Kim HS, Moon JI, Lim JM, Joo CK: Mutations of the TIGR/MYOC gene in primary open-angle glaucoma in Korea. Am J Hum Genet 64: 1775-1778, 1999Google Scholar
  34. 34.
    Mabuchi F, Yamagata Z, Kashiwagi K, Tang S, Iijima H, Tsukahara S: Analysis of myocilin gene mutations in Japanese patients with normal tension glaucoma and primary open-angle glaucoma. Clin Genet 59: 263-268, 2001Google Scholar
  35. 35.
    Lam DS, Leung YF, Chua JK, Baum L, Fan DS, Choy KW, Pang CP: Truncations in the TIGR gene in individuals with and without primary open-angle glaucoma. Invest Ophthalmol Vis Sci 41: 1386-1391, 2000Google Scholar
  36. 36.
    Mukhopadhyay A, Acharya M, Mukherjee S, Ray J, Choudhury S, Khan M, Ray K: Mutations in MYOC gene of Indian primary open angle glaucoma patients. Mol Vis 8: 442-448, 2002Google Scholar
  37. 37.
    Kim BS, Savinova OV, Reedy MV, Martin J, Lun Y, Gan L, Smith RS, Tomarev SI, John SW, Johnson RL: Targeted disruption of the myocilin gene (Myoc) suggests that human glaucoma-causing mutations are gain of function. Mol Cell Biol 21: 7707-7713, 2001Google Scholar
  38. 38.
    Morissette J, Clepet C, Moisan S, Dubois S, Winstall E, Vermeeren D, Nguyen TD, Polansky JR, Cote G, Anctil JL, Amyot M, Plante M, Falardeau P, Raymond V: Homozygotes carrying an autosomal dominant TIGR mutation do not manifest glaucoma (letter). Nat Genet 19: 319-321, 1998Google Scholar
  39. 39.
    Johnson WG: Metabolic Interference and the ± Heterozygote. A hypothetical form of simple inheritance which is neither dominant nor recessive. Am J Hum Genet 32: 374-386, 1980Google Scholar
  40. 40.
    Mukhopadhyay A, Acharya M, Ray J, Khan M, Sarkar K, Banerjee AR, Ray K: Myocilin mutation 1109 C>T (Pro 370 Leu) is the most common gene defect causing early onset primary open angle glaucoma. Ind J Ophthalmol, 2003 (in press).Google Scholar
  41. 41.
    Zhou Z, Vollrath D: A cellular assay distinguishes normal and mutant TIGR/myocilin protein. Hum Mol Genet 8: 2221-2228, 1999Google Scholar
  42. 42.
    Vincent AL, Billingsley G, Buys Y, Levin AV, Priston M, Trope G, Williams-Lyn D, Heon E: Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet 70: 448-460, 2002Google Scholar
  43. 43.
    Dryja TP, Hahn KK, Berson EL: Dominant and digenic mutations in the peripherin/RDS and ROM1 genes in retinitis pigmentosa. Invest Ophthalmol Vis Sci 38: 1972-1982, 1997Google Scholar
  44. 44.
    Colomb E, Nguyen TD, Bechetoille A, Dascotte JC, Valtot F, Brezin AP, Berkani M, Copin B, Gomez L, Polansky JR, Garchon HJ: Association of a single nucleotide polymorphism in the TIGR/MYOCILIN gene promoter with the severity of primary open-angle glaucoma. Clin Genet 60: 220-225, 2001Google Scholar
  45. 45.
    Suzuki R, Hattori Y, Okano K: Promoter mutations of myocilin gene in Japanese patients with open angle glaucoma including normal tension glaucoma. Br J Ophthalmol 84: 1078, 2000Google Scholar
  46. 46.
    Copin B, Brezin AP, Valtot F, Dascotte JC, Bechetoille A, Garchon HJ: Apolipoprotein E-promoter single-nucleotide polymorphisms affect the phenotype of primary open-angle glaucoma and demonstrate interaction with the myocilin gene. Am J Hum Genet 70: 1575-1581, 2002Google Scholar
  47. 47.
    Lin H-J, Chen W-C, Tsai F-J, Tsai S-W: Distributions of p53 codon 72 polymorphism in primary open angle glaucoma. Br J Ophthalmol 86: 767-770, 2002Google Scholar
  48. 48.
    Acharya M, Mitra S, Mukhopadhyay A, Khan M, Roychoudhury S, Ray K: Distribution of p53 codon 72 polymorphism in Indian primary open angle glaucoma patients. Mol Vis 8: 367-371, 2002Google Scholar
  49. 49.
    Aung T, Ocaka L, Ebenezer ND, Morris AG, Krawczak M, Thiselton DL, Alexander C, Votruba M, Brice G, Child AH, Francis PJ, Hitchings RA, Lehmann OJ, Bhattacharya SS: A major marker for normal tension glaucoma: Association with polymorphisms in the OPA1 gene. Hum Genet 110: 52-56, 2002Google Scholar
  50. 50.
    Aung T, Ocaka L, Ebenezer ND, Morris AG, Brice G, Child AH, Hitchings RA, Lehmann OJ, Bhattacharya SS: Investigating the association between OPA1 polymorphisms and glaucoma: Comparison between normal tension and high tension primary open angle glaucoma. Hum Genet 110: 513-514, 2002Google Scholar
  51. 51.
    Sarfarazi M, Child A, Stoilova D, Brice G, Desai T, Trifan OC, Poinoosawmy D, Crick RP: Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region. Am J Hum Genet 62: 641-652, 1998Google Scholar
  52. 52.
    Li Y, Kang J, Horwitz MS: Interaction of an adenovirus E3 14.7-kilodalton protein with a novel tumor necrosis factor alpha-inducible cellular protein containing leucine zipper domains. Mol Cell Biol 18: 1601-1610, 1998Google Scholar
  53. 53.
    Schwamborn K, Weil R, Courtois G, Whiteside ST, Israel A: Phorbol esters and cytokines regulate the expression of the NEMO-related protein, a molecule involved in a NF-kappa B-independent pathway. J Biol Chem 275: 22780-22789, 2000Google Scholar
  54. 54.
    Othman MI, Sullivan SA, Skuta GL, Cockrell DA, Stringham HM, Downs CA, Fornes A, Mick A, Boehnke M, Vollrath D, Richards JE: Autosomal dominant nanophthalmos (NNO1) with high hyperopia and angle-closure glaucoma maps to chromosome 11. Am J Hum Genet 63, 1998Google Scholar
  55. 55.
    Morle L, Bozon M, Zech JC, Alloisio N, Raas-Rothschild A, Philippe C, Lambert JC, Godet J, Plauchu H, Edery P: A locus for autosomal dominant colobomatous microphthalmia maps to chromosome 15q12-q15. Am J Hum Genet 67: 1592-1597, 2000Google Scholar
  56. 56.
    Dickens CJ, Hosskins HDJ: Epidemiology and pathophysiology of congenital glaucoma. In: R. Ritch, B.M. Shields, T. Krupin (eds), The Glaucomas. Mosby, St. Louis, 1996, pp 729-738Google Scholar
  57. 57.
    Gencik A: Epidemiology and genetics of primary congenital glaucoma in Slovakia. Description of a form of primary congenital glaucoma in gypsies with autosomal-recessive inheritance and complete penetrance. Dev Ophthalmol 16: 76-115,1989.Google Scholar
  58. 58.
    Francois J: Congenital glaucoma and its inheritance. Ophthalmologica 181: 61-73, 1980Google Scholar
  59. 59.
    deLuise VP, Anderson DR: Primary infantile glaucoma (congenital glaucoma). Surv Ophthalmol 28: 1-19, 1983Google Scholar
  60. 60.
    Kupfer C, Kaiser-Kupfer MI: Observations on the development of the anterior chamber angle with reference to the pathogenesis of congenital glaucomas. Am J Ophthalmol 88: 424-426, 1979Google Scholar
  61. 61.
    Jaffar MS: Care of the infantile glaucoma patient. In: R.D. Reineck (ed). Ophthalmology Annual. Raven Press, New York, 1988Google Scholar
  62. 62.
    Gencik A, Gencikova A, Ferak V: Population genetical aspects of primary congenital glaucoma. I. Incidence, prevalence, gene frequency, and age of onset. Hum Genet 61: 193-197, 1982Google Scholar
  63. 63.
    Dandona L, Dandona R, Srinivas M, Giridhar P, Vilas K, Prasad MN, John RK, McCarty CA, Rao GN: Blindness in the Indian state of Andhra Pradesh. Invest Ophthalmol Vis Sci 42: 908-916, 2001Google Scholar
  64. 64.
    Turacli ME, Aktan SG, Sayli BS, Akarsu N: Therapeutical and genetical aspects of congenital glaucomas. Int Ophthalmol 16: 359-362, 1992Google Scholar
  65. 65.
    Stoilov I, Akarsu AN, Sarfarazi M: Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet 6: 641-647, 1997Google Scholar
  66. 66.
    Bejjani BA, Stockton DW, Lewis RA, Tomey KF, Dueker DK, Jabak M, Astle WF, Lupski JR: Multiple CYP1B1 mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus. Hum Mol Genet 9: 367-374, 2000Google Scholar
  67. 67.
    Gencik A, Gencikova A, Gerinec A: Genetic heterogeneity of congenital glaucoma. Clin Genet 17: 241-248, 1980Google Scholar
  68. 68.
    Sarfarazi M, Akarsu AN, Hossain A, Turacli ME, Aktan SG, Barsoum-Homsy M, Chevrette L, Sayli BS: Assignment of a locus (GLC3A) for primary congenital glaucoma (Buphthalmos) to 2p21 and evidence for genetic heterogeneity. Genomics 30: 171-177, 1995Google Scholar
  69. 69.
    Akarsu AN, Turacli ME, Aktan SG, Barsoum-Homsy M, Chevrette L, Sayli BS, Sarfarazi M: A second locus (GLC3B) for primary congenital glaucoma (Buphthalmos) maps to the 1p36 region. Hum Mol Genet 5: 1199-1203, 1996Google Scholar
  70. 70.
    Schwartzman ML, Balazy M, Masferrer J, Abraham NG, McGiff JC, Murphy RC: 12(R)-hydroxyicosatetraenoic acid: A cytochrome-P450-dependent arachidonate metabolite that inhibits Na+,K+-ATPase in the cornea. Proc Natl Acad Sci USA 84: 8125-8129, 1987Google Scholar
  71. 71.
    Graham-Lorence SE, Peterson JA: Structural alignments of P450s and extrapolations to the unknown. Meth Enzymol 272: 315-326, 1996Google Scholar
  72. 72.
    Yamazaki S, Sato K, Suhara K, Sakaguchi M, Mihara K, Omura T: Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J Biochem (Tokyo) 114: 652-657, 1993Google Scholar
  73. 73.
    Chen CD, Kemper B: Different structural requirements at specific proline residue positions in the conserved proline-rich region of cytochrome P450 2C2. J Biol Chem 271: 28607-28611, 1996Google Scholar
  74. 74.
    Peitsch MC: ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans 24: 274-279, 1996Google Scholar
  75. 75.
    Stoilov I, Akarsu AN, Alozie I, Child A, Barsoum-Homsy M, Turacli ME, Or M, Lewis RA, Ozdemir N, Brice G, Aktan SG, Chevrette L, Coca-Prados M, Sarfarazi M: Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am J Hum Genet 62: 573-584, 1998Google Scholar
  76. 76.
    Panicker SG, Reddy ABM, Mandal AK, Ahmed N, Nagarajaram HA, Hasnain SE, Balasubramanian D: Identification of novel mutations causing familial primary congenital glaucoma in Indian pedigrees. Invest Ophthalmol Vis Sci 43: 1358-1366, 2002Google Scholar
  77. 77.
    Sarfarazi M, Stoilov I: Molecular genetics of primary congenital glaucoma. Eye 14: 422-428, 2000Google Scholar
  78. 78.
    Mashima Y, Suzuki Y, Sergeev Y, Ohtake Y, Tanino T, Kimura I, Miyata H, Aihara M, Tanihara H, Inatani M, Azuma N, Iwata T, Araie M: Novel cytochrome P4501B1 (CYP1B1) gene mutations in Japanese patients with primary congenital glaucoma. Invest Ophthalmol Vis Sci 42: 2211-2216, 2001Google Scholar
  79. 79.
    Stoilov IR, Costa VP, Vasconcellos JP, Melo MB, Betinjane AJ, Carani JC, Oltrogge EV, Sarfarazi M: Molecular genetics of primary congenital glaucoma in Brazil. Invest Ophthalmol Vis Sci 43: 1820-1827, 2002Google Scholar
  80. 80.
    Vincent A, Billingsley G, Priston M, Williams-Lyn D, Sutherland J, Glaser T, Oliver E, Walter MA, Heathcote G, Levin A, Heon E: Phenotypic heterogeneity of CYP1B1: Mutations in a patient with Peters' anomaly. J Med Genet 38: 324-326, 2001Google Scholar
  81. 81.
    Heon E, Sheth BP, Kalenak JW, Sunden SL, Streb LM, Taylor CM, Alward WL, Sheffield VC, Stone EM: Linkage of autosomal dominant iris hypoplasia to the region of the Rieger syndrome locus (4q25). Hum Mol Genet 4: 1435-1439, 1995Google Scholar
  82. 82.
    Phillips JC, del Bono EA, Haines JL, Pralea AM, Cohen JS, Greff LJ, Wiggs JL: A second locus for Rieger syndrome maps to chromosome 13q14. Am J Hum Genet 59: 613-619, 1996Google Scholar
  83. 83.
    Lehmann OJ, Ebenezer ND, Jordan T, Fox M, Ocaka L, Payne A, Leroy BP, Clark BJ, Hitchings RA, Povey S, Khaw PT, Bhattacharya SS: Chromosomal duplication involving the forkhead transcription factor gene FOXC1 causes iris hypoplasia and glaucoma. Am J Hum Genet 67: 1129-1135, 2000Google Scholar
  84. 84.
    Andersen JS, Pralea AM, DelBono EA, Haines JL, Gorin MB, Schuman JS, Mattox CG, Wiggs JL: A gene responsible for the pigment dispersion syndrome maps to chromosome 7q35-q36. Arch Ophthalmol 115: 384-388, 1997Google Scholar
  85. 85.
    WuDunn D: Genetic basis of glaucoma. Curr Opin Ophthalmol 13: 55-60, 2002Google Scholar
  86. 86.
    Dreyer SD, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, Johnson RL, Lee B: Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in Nail-Patella Syndrome. Nat Genet 19: 47-50, 1998Google Scholar
  87. 87.
    Haider NB, Ikeda A, Naggert JK, Nishina PM: Genetic modifiers of vision and hearing. Hum Mol Genet 11: 1195-1206, 2002Google Scholar
  88. 88.
    Katsanis N, Ansley SJ, Badano JL, Eichers ER, Lewis RA, Hoskins BE, Scambler PJ, Davidson WS, Beales PL, Lupski JR: Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 293: 2256-2259, 2001Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Kunal Ray
    • 1
  • Arijit Mukhopadhyay
    • 1
  • Moulinath Acharya
  1. 1.Human Genetics and Genomics DivisionIndian Institute of Chemical BiologyJadavpur, KolkataIndia

Personalised recommendations