Molecular and Cellular Biochemistry

, Volume 253, Issue 1–2, pp 179–190

The role of pilin glycan in neisserial pathogenesis

  • Asesh Banerjee
  • Salil K. Ghosh
Article

Abstract

The pilus of pathogenic Neisseria is a polymer composed mainly of the glycoprotein, pilin. Recent investigations significantly enhanced characterization of pilin glycan (Pg) from N. gonorrhoeae (gonococcus, GC) and N. meningitidis (meningococcus, MC). Several pilin glycosylation genes were discovered recently from these bacteria and some of these genes transfer sugars previously unknown to be present in neisserial pili. Due to these findings, glycans of GC and MC pilin are now considered more complex. Furthermore, various Pg can be expressed by different strains and variants of GC, as well as MC. Intra-species variation of Pg between different groups of GC or MC can partly be due to polymorphisms of glycosylation genes. In pilus of pathogenic Neisseria, alternative glycoforms are also produced due to phase-variation (Pv) of pilin glycosylation genes. Most remarkably, the pgtA (pilin glycosyl transferase A) gene of GC can either posses or lack the ability of Pv. Many GC strains carry the phase-variable (Pv+) pgtA, whereas others carry the allele lacking Pv (Pv–). Mostly, the GC isolates from disseminated gonococcal infection (DGI) carry Pv+ pgtA but organisms from uncomplicated gonorrhea (UG) contain the Pv– allele. This data suggests that Pv of pgtA facilitates DGI, whereas constitutive expression of the Pv– pgtA may promote UG. Additional implications of Pg in various physiological and pathogenic mechanisms of Neisseria can also be envisaged based on various recent data.

Neisseria pilus glycosylation pilin glycan gonorrhea DGI meningitis phase-variation poly-G tract glycosyl transferase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meitzner TA, Cohen MS: Vaccines against gonococcal infection. In: M.M. Levin, G.C. Woodrow, J.B. Kaper, G.S. Cobon (eds). New Generation Vaccines. Marcel Dekker, New York, 1997, pp 817-842Google Scholar
  2. 2.
    World Health Organization: Sexually Transmitted Diseases (STDs) — WHO Information Fact Sheet, World Health Organization, Geneva, Switzerland, 1996Google Scholar
  3. 3.
    Morse SA: Neisseria, Moraxella, Kingella and Eikenella. In: S. Baron (ed). Medical Microbiology. UTMB Press, Galveston, 1996, pp 217-231 (www.gsbs.utmb.edu/microbook/ch014.htm)Google Scholar
  4. 4.
    Virji M: Glycosylation of the meningococcus pilus protein. ASM News 64: 398-405, 1998Google Scholar
  5. 5.
    World Health Organization: Meningococcal disease: Public health burden and control. WHO Information Fact Sheet, World Health Organization, Geneva, Switzerland, 2002Google Scholar
  6. 6.
    Evans BA: Ultrastructural study of cervical gonorrhea. J Infect Dis 136: 248-255, 1977Google Scholar
  7. 7.
    Hultgren SJ, Abraham S, Caparon M, Falk P, St. Geme JW III, Normark S: Pilus and nonpilus bacterial adhesins: Assembly and function in cell recognition. Cell 73: 887-901, 1993Google Scholar
  8. 8.
    Gubish ER Jr, Chen KC, Buchanan TM: Attachment of gonococcal pili to lectin-resistant clones of Chinese hamster ovary cells. Infect Immun 37: 189-194, 1982Google Scholar
  9. 9.
    Stephens DS, McGee ZA: Attachment of Neisseria meningitidis to human mucosal surfaces: Influence of pili and type of receptor cell. J Infect Dis 143: 525-532, 1981Google Scholar
  10. 10.
    Winther-Larsen HC, Hegge FT, Wolfgang M, Hayes SF, van Putten JP, Koomey M: Neisseria gonorrhoeae PilV, a type IV pilus-associated protein essential to human epithelial cell adherence. Proc Natl Acad Sci USA 98: 15276-15281, 2001Google Scholar
  11. 11.
    Scheuerpflug I, Rudel T, Ryll R, Pandit J, Meyer TF: Roles of PilC and PilE proteins in pilus-mediated adherence of Neisseria gonorrhoeae and Neisseria meningitidis to human erythrocytes and endothelial and epithelial cells. Infect Immun 67: 834-843, 1999Google Scholar
  12. 12.
    Virji M, Alexandrescu C, Ferguson DJ, Saunders JR, Moxon ER: Variations in the expression of pili: The effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells. Mol Microbiol 6: 1271-1279, 1992Google Scholar
  13. 13.
    McGee ZA, Johnson AP, Taylor-Robinson D: Pathogenic mechanisms of Neisseria gonorrhoeae: Observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4. J Infect Dis 143: 413-421, 1981Google Scholar
  14. 14.
    Swanson JL, Robbins K, Barrera O, Corwin D, Boslego J, Ciak J, Blake MS, Koomey JM: Gonococcal pilin variants in experimental gonorrhea. J Exp Med 165: 1344-1357, 1987Google Scholar
  15. 15.
    Seifert HS: Questions about gonococcal pilus phase-and antigenic variation. Mol Microbiol 21: 433-440, 1996Google Scholar
  16. 16.
    Hagblom P, Segal E, Billyard E, So M: Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 315: 156-158, 1985Google Scholar
  17. 17.
    Haas R, Meyer TF: The repertoire of silent pilus genes in Neisseria gonorrhoeae: Evidence for gene conversion. Cell 44: 107-115, 1986Google Scholar
  18. 18.
    Segal E, Hagblom P, Seifert HS, So M: Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments. Proc Natl Acad Sci USA 83: 2177-2181, 1986Google Scholar
  19. 19.
    Koomey M, Gotschlich EC, Robbins K, Bergstrom S, Swanson JL: Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117: 391-398, 1987Google Scholar
  20. 20.
    Jonsson AB, Ilver D, Falk P, Pepose J, Normark S: Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue. Mol Microbiol 13: 403-416, 1994Google Scholar
  21. 21.
    Swanson J, Bergstrom S, Barrera O, Robbins K, Corwin D: Pilus-gonococcal variants. Evidence for multiple forms of piliation control. J Exp Med 162: 729-744, 1985Google Scholar
  22. 22.
    Jonsson A-B, Nyberg G, Normark S: Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J 10: 477-488, 1991Google Scholar
  23. 23.
    Messner P, Sleytr UB: Bacterial surface layer glycoproteins. Glycobiology 1: 545-551, 1991Google Scholar
  24. 24.
    Benz I, Schimdt AM: Never say never again: protein glycosylation in pathogenic bacteria. Mol Microbiol 45: 267-276, 2002Google Scholar
  25. 25.
    Chia JS, Chang LY, Shun CT, Chang YY, Tsay YG, Chen JY: A 60-kilodalton immunodominant glycoprotein is essential for cell wall integrity and the maintenance of cell shape in Streptococcus mutans. Infect Immun 69: 6987-6998, 2001Google Scholar
  26. 26.
    Robertson JN, Vincent P, Ward ME: The preparation and properties of gonococcal pili. J Gen Microbiol 102: 169-177, 1977Google Scholar
  27. 27.
    Schoolnik GK, Fernandez R, Tai JY, Rothbard J, Gotschlich EC: Gonococcal Pili: Primary structure and receptor binding domain. J Exp Med 159: 1351-1370, 1984Google Scholar
  28. 28.
    Hardy MR: Methods for the analysis of glycoprotein carbohydrates. ABRF News 5: 12-19, 1994 (www.abrf.org/ABRFNews/1994/April1994/apr94methods.html)Google Scholar
  29. 29.
    Parge HE, Forest KT, Hickey MJ, Christensen DA, Getzoff ED, Tainer JA: Structure of the fibre-forming protein pilin at 2.6 A resolution. Nature 378: 32-38, 1995Google Scholar
  30. 30.
    Virji M: Post-translational modifications of meningococcal pili. Identification of common substituents: Glycans and alpha-glycerophosphate — a review. Gene 192: 141-147, 1997Google Scholar
  31. 31.
    Virji M, Saunders JR, Sims G, Makepeace K, Maskell D, Ferguson DJ: Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: Modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol Microbiol 10: 1013-1028, 1993Google Scholar
  32. 32.
    Stimson E, Virji M, Makepeace K, Dell A, Morris HR, Payne G, Saunders JR, Jennings MP, Barker S, Panico M: Meningococcal pilin: A glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol Microbiol 17: 1201-1214, 1995Google Scholar
  33. 33.
    Marceau M, Forest K, Beretti JL, Tainer J, Nassif X: Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. Mol Microbiol 27: 705-715, 1998Google Scholar
  34. 34.
    Hamadeh RM, Estabrook MM, Zhou P, Jarvis GA, Griffiss JM: Anti-Gal binds to pili of Neisseria meningitidis: the immunoglobulin A isotype blocks complement-mediated killing. Infect Immun 63: 4900-4906, 1995Google Scholar
  35. 35.
    Aho EL: Characterization of a class II pilin expression locus from Neisseria meningitidis: Evidence for increased diversity among pilin genes in pathogenic Neisseria species. Infect Immun 65: 2613-2620, 2002Google Scholar
  36. 36.
    Kahler CM, Martin LE, Tzeng YL, Miller YK, Sharkey K, Stephens DS, Davies JK: Polymorphisms in pilin glycosylation locus of Neisseria meningitidis expressing class II pili. Infect Immun 69: 3597-3604, 2001Google Scholar
  37. 37.
    Marceau M, Nassif X: Role of glycosylation at Ser63 in production of soluble pilin in pathogenic Neisseria. J Bacteriol 181: 656-661, 1999Google Scholar
  38. 38.
    Meyer TF, Gibbs CP, Haas R: Variation and control of protein expression in Neisseria. Annu Rev Microbiol 44: 451-477, 1990Google Scholar
  39. 39.
    Jennings MP, Virji M, Evans D, Foster V, Srikhanta YN, Steeghs L, van der L P, Moxon ER: Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis. Mol Microbiol 29: 975-984, 1998Google Scholar
  40. 40.
    Jennings MP, Hood DW, Peak IRA, Virji M, Moxon ER: Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. Mol Microbiol 18: 729-740, 1995Google Scholar
  41. 41.
    Gotschlich EC: Genetic locus for the biosynthesis of the variable portion of Neisseria gonorrhoeae LOS. J Exp Med 180: 2181-2190, 1994Google Scholar
  42. 42.
    Banerjee A, Wang R, Uljon SN, Rice PA, Gotschlich EC, Stein DC: Identification of the gene (lgtG) encoding the lipooligosaccharide beta chain synthesizing glucosyl transferase from Neisseria gonorrhoeae. Proc Natl Acad Sci USA 95: 10872-10877, 1998Google Scholar
  43. 43.
    Hammerschmidt S, Muller A, Sillmann H, Muhlenhoff M, Borrow R, Fox A, van Putten J, Zollinger WD, Gerardy-Schahn R, Frosch M: Capsule phase variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the polysialyltransferase gene (siaD): Correlation with bacterial invasion and the outbreak of meningococcal disease. Mol Microbiol 20: 1211-1220, 1996Google Scholar
  44. 44.
    Sarkari J, Pandit N, Moxon ER, Achtman M: Variable expression of the Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promoter containing poly-cytidine. Mol Microbiol 13: 207-217, 1994Google Scholar
  45. 45.
    Vander EA, Hopman CT, Zaat S, Essink BB, Berkhout B, Dankert J: Variable expression of class 1 outer membrane protein in Neisseria meningitidis is caused by variation in the spacing between the −10 and −35 regions of the promoter. J Bacteriol 177: 2475-2480, 1995Google Scholar
  46. 46.
    Power PM, Roddam LF, Dieckelmann M, Srikhanta YN, Tan YC, Berrington AW, Jennings MP: Genetic characterization of pilin glycosylation in Neisseria meningitidis. Microbiology 146: 967-979, 2000Google Scholar
  47. 47.
    Banerjee A, Wang R, Supernavage SL, Ghosh SK, Parker J, Ganesh NF, Wang PG, Gulati S, Rice PA: Implications of phase variation of a gene (pgtA) encoding a pilin galactosyl transferase in gonococcal pathogenesis. J Exp Med 196: 147-162, 2002Google Scholar
  48. 48.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 215: 403-410, 1990Google Scholar
  49. 49.
    Gohmann S, Manning PA, Alpert CA, Walker MJ, Timmis KN: Lipopolysaccharide O-antigen biosynthesis in Shigella dysenteriae serotype 1: Analysis of the plasmid-carried rfp determinant. Microb Pathog 16: 53-64, 1994Google Scholar
  50. 50.
    Hardy MR, Townsend RR: High-pH anion-exchange chromatography of glycoprotein-derived carbohydrates. Meth Enzymol: 208-225, 1994Google Scholar
  51. 51.
    Saunders NJ, Jeffries AC, Peden JF, Hood DW, Tettelin H, Rappuoli R, Moxon ER: Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol Microbiol 37: 207-215, 2000Google Scholar
  52. 52.
    Galili U, Shohet SB, Kobrin E, Stults CL, Macher BA: Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem 263: 17755-17762, 1988Google Scholar
  53. 53.
    Minor S, Gotschlich EC: The genetics of LPS synthesis by the gonococcus. In: J.B. Goldberg (ed). Genetics of Bacterial Polysaccharides. CRS Press, Florida, 1999, pp 111-131Google Scholar
  54. 54.
    Knapp JS, Holmes KK: Disseminated gonococcal infections caused by Neisseria gonorrhoeae with unique nutritional requirements. J Infect Dis 132: 204-208, 1975Google Scholar
  55. 55.
    Cannon JG, Buchanan TM, Sparling PF: Confirmation of association of protein I serotype of Neisseria gonorrhoeae with ability to cause disseminated infection. Infect Immun 40: 816-819, 1983Google Scholar
  56. 56.
    Dillard JP, Seifert HS: A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol 41: 263-277, 2001Google Scholar
  57. 57.
    Burrman ET, Westwater C, Hube B, Brown AJP, Odds FC, Gow NAR: Molecular analysis of CaMnt1p, a mannosyl transferase important for adhesion and virulence of Candida albicans. Proc Natl Acad Sci USA 95: 7670-7675, 1998Google Scholar
  58. 58.
    Imperiali B, Shannon KL, Rickert KW: Role of peptide conformation in asparagine-linked glycosylation. J Am Chem Soc 114: 7942-7944, 1992Google Scholar
  59. 59.
    Sun WY, Xiong J, Shulman MJ: Substitution of asparagine for serine-406 of the immunoglobulin mu heavy chain alters glycosylation at asparagine-402. Biochem Biophys Res Commun 179: 1627-1634, 1991Google Scholar
  60. 60.
    Bisaria VS, Mishra S: Regulatory aspects of cellulase biosynthesis and secretion. Crit Rev Biotechnol 9: 61-103, 1989Google Scholar
  61. 61.
    Molecular Glycobiology: Frontiers in Molecular Biology. Oxford University Press, 1994Google Scholar
  62. 62.
    Moxon ER, Rainey PB, Nowak MA, Lenski RE: Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 4: 24-33, 1994Google Scholar
  63. 63.
    Power PM, Roddam LF, Warren MJ, Dieckelmann M, Srikanta Y, Apicella MA, Jennings MP: The genetics of glycosylation in Neisseria meningitidis. Thirteenth International Pathogenic confererence, Norwegian Institute of Public Health, Oslo, September 1-6, 2002Google Scholar
  64. 64.
    Power PM, Jennings MP: The genetics of glycosylation in gram-negative bacteria. FEMS Microbiol Lett 218: 211-222, 2003Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Asesh Banerjee
    • 1
  • Salil K. Ghosh
    • 1
  1. 1.Department of BiologyThe Catholic University of AmericaWashingtonUSA

Personalised recommendations