Advertisement

Antonie van Leeuwenhoek

, Volume 84, Issue 4, pp 313–322 | Cite as

Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina

  • Diego Libkind
  • Silvia Brizzio
  • Alejandra Ruffini
  • Mário Gadanho
  • Maria van Broock
  • José Paulo Sampaio
Article

Abstract

Fifteen aquatic environments (lakes, lagoons and rivers) of glacial origin in the northern Andean Patagonia (Argentina) were surveyed for the occurrence of red yeasts. Subsurface water samples were filtered and used for colony counting and yeast isolation. A preliminary quantitative analysis indicated that total yeast counts ranged between 0 and 250 cells l−1. A polyphasic approach including physiological and molecular methods was used for the identification of 64 carotenogenic yeast strains. The molecular characterisation of the isolates was based on the mini/microsatellite-primed PCR technique (MSP-PCR) employing the (GTG)5 and the M13 primers. Comparison of representative fingerprints of each group with those of the type strains of pigmented yeasts allowed the expeditious identification of 87.5% isolates. The sequence analysis of the D1/D2 domains of the 26S rDNA was employed to confirm identifications and in the characterization of the unidentified MSP-PCR groups. Teleomorphic yeast species were detected by performing sexual compatibility assays. The isolates corresponded to 6 genera and 15 yeast species, including four new yeast species of the genera Cryptococcus (1), Rhodotorula (1) and Sporobolomyces (2). Rhodotorula mucilaginosa was found in the majority of the samples and represented ca. 50% of the total number of isolates. However, this yeast was not detected in aquatic environments with very low anthropic influence. Other frequent yeast isolates were teleomorphic yeast species of Rhodosporidium babjevae, R. kratochvilovae and Sporidiobolus salmonicolor. This study represents the first report on red yeast occurrence and biodiversity in northwestern Patagonia.

Aquatic environments Carotenogenic yeasts MSP-PCR fingerprinting Patagonia 26S rDNA sequence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnett J.A., Payne R.W. and Yarrow D. 2000.Yeasts: Characteristics and Identification. 3rd edn. Cambridge University Press, Cambridge.Google Scholar
  2. Bhosale P. and Gadre R.V. 2001. Optimization of carotenoid production from hyper-producing Rhodotorula glutinis mutant 32 by a factorial approach. Lett. Appl. Microbiol. 33: 12–16.PubMedCrossRefGoogle Scholar
  3. Boguslawska-Was E. and Dabrowski W. 2001. The seasonal variability of yeasts and yeast-like organisms in water and bottom sediment of the Szczecin Lagoon. Int. J. Hyg. Environ. Health 203: 451–458.PubMedCrossRefGoogle Scholar
  4. Brizzio S. and van Broock M. 1998. Characterization of wild yeast from Nahuel Huapi National Park (Patagonia, Argentina. J. Food Technol. Biotechnol. 4: 273–278.Google Scholar
  5. Buzzini P. 2000. An optimization study of carotenoid production by Rhodotorula glutinis DBVPG 3853 from substrates containing concentrated rectified grape must as the sole carbohydrate source. J. Ind. Microbiol. Biotechnol. 24: 41–45.CrossRefGoogle Scholar
  6. Dýaz M., Pedrozo F. and Baccala N. 2000. Summer classification of Southern Hemisphere temperate lakes (Patagonia, Argentina. Lakes Reservoirs 5: 213–229.CrossRefGoogle Scholar
  7. Dimitri M.J. 1982. Flora Dendrologica y Cultivada. In: La region de los bosques andino patagonicos. Tomo II. Secretaria de Agricultura y Ganaderýa de la Nacion. Instituto Nacional de Tecnologýa Agropecuaria, Bs. As., Argentina.Google Scholar
  8. Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  9. Gadanho M. and Sampaio J.P. 2002. Polyphasic taxonomy of the basidiomycetous yeast genus Rhodotorula: Rh. glutinis sensu stricto and Rh. dairenensis comb. nov. FEMS Yeast Res. 2: 47–58.PubMedGoogle Scholar
  10. Gadanho M. and Almeida J.M.G.C.F. Sampaio J.P. 2003. Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Anton. Leeuw. Int. J. G. (in press).Google Scholar
  11. Gadanho M., Sampaio J.P. and Spencer-Martins I. 2001. Polyphasic taxonomy of the basidiomycetous yeast genus Rhodosporidium: R azoricum sp. nov. Can. J. Microbiol. 47: 213–221.PubMedCrossRefGoogle Scholar
  12. Hagler A.N. and Ahearn D.G. 1987. Ecology of aquatic yeasts. In: Rose A.H. and Harrison J.S. (eds), The Yeasts Vol. vol. 1. Academic Press, London, UK, pp. 181–205.Google Scholar
  13. Hagler A.N. and Mendonça-Hagler L.C. 1981. Yeasts from marine and estuarine waters with different levels of pollution in the state of Rio de Janeiro, Brazil. Appl. Environ. Microbiol. 41: 173–178.PubMedGoogle Scholar
  14. Herzberg M., Fischer R. and Titze A. 2002. Conflicting results obtained by RAPD-PCR and large-subunit rDNA sequences in determining and comparing yeast strains isolated from flowers: a comparison of two methods. Int. J. Syst. Evol. Microbiol. 52: 1423–1433.PubMedCrossRefGoogle Scholar
  15. Meyer W., Mitchell T.G., Freedman E.Z. and Vilgalys R. 1993. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J. Clin. Microbiol. 31: 2274–2280.PubMedGoogle Scholar
  16. Nelis H.J. and De Leenheer A.P. 1991. Microbial sources of supcarotenoid pigments used in foods and feeds. J. Appl. Bacteriol. 70: 181–191.Google Scholar
  17. Quiros R. and Drago E. 1985. Relaciones entre variables fýsicas, morfometricas y climaticas en lagos patagonicos. Rev. Asoc. Cs. Nat. Litoral 16: 181–199.Google Scholar
  18. Rosa C.A., Resende M.A., Barbosa F.A.R., Morais P.B. and Franzot S.R. 1995.Yeast diversity in a mesotrophic lake on the karstic plateau of Lagoa Santa, MG-Brazil. Hydrobiologia 308: 103–108.Google Scholar
  19. Sampaio J.P., Gadanho M., Santos S., Duarte F., Pais C., Fonseca A. et al. 2001a. Polyphasic taxonomy of the genus Rhodosporidium: R. kratochvilovae and related anamorphic species. Int. J. Syst. Evol. Microbiol 51: 687–697.PubMedGoogle Scholar
  20. Sampaio J.P., Gadanho M. and Bauer R. 2001b. Taxonomic studies the genus Cystofilobasidium: description of Cystofilobasidium ferigula sp. nov. and clarification of the status of Cystofilobasidium lari-marini. Int. J. Syst. Evol. Microbiol. 51: 221–229.PubMedGoogle Scholar
  21. Simard R.E. and Blackwood A.C. 1971a. Ecological studies on yeasts in the St. Lawrence River. Can. J. Microbiol. 17: 353–357.PubMedGoogle Scholar
  22. Simard R.E. and Blackwood A.C. 1971b. Yeasts from the St. Lawrence River. Can. J. Microbiol. 17: 197–203.PubMedCrossRefGoogle Scholar
  23. Simberloff D., Relva M.A. and Nunez M. 2002. Gringos en el bosque: introduced tree invasion in a natural Nothofagus/Austrocedrus forest. Biol. Invasions 4: 35–53.CrossRefGoogle Scholar
  24. Slavikova E. and Vadkertiova R. 1997. Seasonal occurrence of yeasts and yeast-like organisms in the river Danube. Anton. Leeuw. Int. J. G. 72: 77–80.CrossRefGoogle Scholar
  25. Slavikova E., Vadkertiova R. and Kockova-Kratochvýlova A. 1992. Yeasts isolated from artificial lake waters. Can. J. Microbiol. 38: 1206–1209.CrossRefGoogle Scholar
  26. Swofford D.L. 2000. PAUP*. Phylogenetic Analysis Using Paron simony (*and Other Methods). Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  27. Yarrow D. 1998. Methods for the isolation, maintenance and identification of yeasts. In: Kurtzman C.P. and Fell J.W. (eds), The Yeasts: A Taxonomic Study. Elsevier Science Publishers, Amsterdam, pp. 77–100.Google Scholar
  28. Zhao J.-H., Bai F.-Y., Guo L.-D. and Jia J.-H. 2002. Rhodotorula pinicola sp. nov., a basidiomycetous yeast species isolated from xylem of pine twigs. FEMS Yeast Res. 2: 159–163.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Diego Libkind
    • 1
  • Silvia Brizzio
    • 1
  • Alejandra Ruffini
    • 1
  • Mário Gadanho
    • 2
  • Maria van Broock
    • 1
  • José Paulo Sampaio
    • 2
  1. 1.Laboratorio de Microbiología Aplicada y BiotecnologíaUniversidad Nacional del Comahue, Centro Regional Universitario Bariloche (CRUB) – CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas)Bariloche, Río NegroArgentina
  2. 2.Centro de Recursos Microbiológicos, Secção Autónoma de Biotecnologia, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations