Advertisement

Climatic Change

, Volume 60, Issue 1–2, pp 37–72 | Cite as

The Effect of Spatial Scale of Climatic Change Scenarios on Simulated Maize, Winter Wheat, and Rice Production in the Southeastern United States

  • E. A. Tsvetsinskaya
  • L. O. MearnsEmail author
  • T. Mavromatis
  • W. Gao
  • L. McDaniel
  • M. W. Downton
Article

Abstract

We use the CERES family of crop models to assess the effect of different spatial scales of climate change scenarios on the simulated yield changes of maize (Zea mays L.), winter wheat (Triticum aestivum L.),and rice (Oryza sativa L.) in the Southeastern United States. The climate change scenarios were produced with the control and doubled CO2 runs of a high resolution regional climate model anda coarse resolution general circulation model, which provided the initial and lateral boundary conditions for the regional model. Three different cases were considered for each scenario: climate change alone, climate change plus elevated CO2, and the latter with adaptations. On the state level,for most cases, significant differences in the climate changed yields for corn were found, the coarse scale scenario usually producing larger modeled yield decreases or smaller increases. For wheat, however, which suffered large decreases in yields for all cases, very little contrast in yield based on scale of scenario was found. Scenario scale resulted in significantly different rice yields, but mainly because of low variability in yields. For maize the primary climate variable that explained the contrast in the yields calculated from the two scenarios is the precipitation during grain fill leading to different water stress levels. Temperature during vernalization explains some contrasts in winter wheat yields. With adaptation, the contrasts in the yields of all crops produced by the scenarios were reduced but not entirely removed. Our results indicate that spatial resolution of climate change scenarios can be an important uncertainty in climate change impact assessments, depending on the crop and management conditions.

Keywords

Winter Wheat Regional Climate Model Climate Change Impact Climate Change Scenario Rice Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams R. M., McCarl, B. A., and Mearns, L. O.: 2003, 'The Effects of Spatial Scale of Climate Scenarios on Economic Assessments: An Example from U.S. Agriculture', Clim. Change 60, 131–148.Google Scholar
  2. Adams R. M., Rosenzweig, C., Peart, R. M., Ritchie, J. T., McCarl, B. A., Glyer, J.D., and Curry, R. B.: 1990, 'Global Climate Change and U.S. Agriculture', Nature 345, 219–224.Google Scholar
  3. Aggarwal P. K. and Mall, R. K.: 2002, 'Climate Change and Rice Yields in Diverse Agroenvironments of India. II. Effect of Uncertainties in Scenarios and Crop Models on Impact Assessment', Clim. Change 52, 331–343.Google Scholar
  4. Alexandrov V. A. and Hoogenboom, G.: 2000, 'Vulnerability and Adaptation Assessments of Agricultural Crops under Climate Change in the Southeastern U.S.A.', Theor. Appl. Climatol. 67, 45–63.Google Scholar
  5. Alexandrov V. A. and Hoogenboom, G.: 2001, 'Climate Variation and Crop Production in Georgia, U.S.A., during the Twentieth Century', Climate Res. 17, 33–43.Google Scholar
  6. Bacsi Zs. and Hunkar, M.: 1994, 'Assessment of the Impacts of Climate Change on the Yields ofWinter Wheat and Maize, Using Crop Models', Quarterly Journal of the Hungarian Meteorological Service 98 (2), 119–134.Google Scholar
  7. Bates G. T., Hostetler, S. W., and Giorgi, F.: 1996, '2-Year Simulation of the Great-Lakes Region with a Coupled Modeling System', Mon. Wea. Rev. 123, 1505–1522.Google Scholar
  8. Bates G. T., Giorgi, F., and Mearns, L. O., Unpublished Data: National Center for Atmospheric Research.Google Scholar
  9. Baumer, O., Kenyon, P., and Bettis, J.: 1994, 'Prediction of Soil Properties', in Map Unit Use Fules (MUUF), User's Manual Version 2.14, Natural Resources Conservation Service, Wetland Science Institute.Google Scholar
  10. Brown, R. A., Rosenberg, N. J., Easterling, W. E., Hays, C., and Mearns, L. O.: 2000, 'Potential Production and Environmental Effects of Switch Grass and Traditional Crops under Current and Greenhouse-Altered Climate in the MINK Region of the Central United States', Ecology and Agricultural Environment 78, 31–47.Google Scholar
  11. Carbone G., Kiechle, W., Locke, C., Mearns, L. O., McDaniel, L., and Downton, M.: 2003, 'Response of Soybean and Sorghum to Varying Spatial Scales of Climate Change Scenarios in the Southeastern United States', Clim. Change 60, 73–98.Google Scholar
  12. Cheyglinted S., Ranamukhaarachchi, S. L., and Singh, G.: 2001, 'Assessment of the CERES-Rice Model for Rice Production in the Central Plain of Thailand', J. Agricultural Science 137, 289–298.Google Scholar
  13. Curry R. B., Peart, R. M., Jones, J.W., Boote, K. J., and Allen, L. H. Jr.: 1990, 'Simulation as a Tool for Analyzing Crop Response to Climate Change', Transactions of the ASAE 33 (3), 981–990.Google Scholar
  14. Dhakhwa G. B., Campbell, C. L., LeDuc, S. K., and Cooter, E. J.: 1997, 'Maize Growth: Assessing the Effects of Global Warming and CO2 Fertilization with Crop Models', Agric. For. Meteorol. 87, 253–272.Google Scholar
  15. Doherty R. M., Mearns, L. O., Reddy, R. J., Downton, M., and McDaniel, L.: 2003, 'Impacts of the Spatial Scale of Climate Scenarios on Simulated Cotton Production in the Southeastern U.S.A.', Clim. Change 60, 99–130.Google Scholar
  16. Gates, L.: 1985, 'The Use of General Circulation Models in the Analysis of the Ecosystem Impacts of Climatic Change', Clim. Change 7, 267–284.Google Scholar
  17. Giorgi, F., Mearns, L., Shields, S., and McDaniel, L.: 1998, 'Regional Nested Model Simulations of Present Day and 2 × CO2 Climate over the Central Great Plains of the United States', Clim. Change 40, 457–493.Google Scholar
  18. Giorgi, F. et al.: 2001, 'Regional Climate Information: Evaluations and Projections', Chapter 10 in Houghton et al., IPCC Third Assessment Report. The Science of Climate Change, Cambridge University Press, Cambridge, pp. 583–638.Google Scholar
  19. Godwin, D., Singh, U., Ritchie, J. T., and Alocilja, E. C.: 1992, A User's Guide to CERES-rice, Int. Fertilizer Development Ctr., Muscle Shoals, AL.Google Scholar
  20. Graham, W. D. Jr., Gambrell, R. H., and Myers, C. W.: 1993, 'Performance of Small Grain Varieties in South Carolina-1993', Clemson University, South Carolina Agriculture and Forestry Research System.Google Scholar
  21. Graham, W. D. Jr., Gambrell, R. H., and Myers, C. W.: 1996, 'Performance of Small Grain Varieties in South Carolina-1996', Clemson University, South Carolina Agriculture and Forestry Research System.Google Scholar
  22. Guereña, A., Ruiz-Ramos, M., Diaz-Ambrona, C., Conde, J., and Minguez, M.: 2001, 'Assessment of Climate Change and Agriculture in Spain Using Climate Models', Agron. J. 93, 237–249.Google Scholar
  23. Hodges T., Botner, D., Sakamoto, C., and Hays Haug, J.: 1987, 'Using the CERES-Maize Model to Estimate Production for the U.S. Cornbelt', Agric. For. Meteorol. 40, 293–303.Google Scholar
  24. Hoogenboom G., Jones, J.W., Wilkens, P.W., Batchelor, W. D., Bowen, W. T., Hunt, L. A., Pickering, N. B., Singh, U., Godwin, D. C., Baer, B., Boote, K. J., Ritchie, J. T., and White, J. W.: 1994, 'Crop Models', in Tsuji G. Y., Uehara, G., and Balas, S. (eds.), DSSAT Version 3, University of Hawaii, Honolulu, Hawaii, Vol. 2, pp. 95–244.Google Scholar
  25. Iglesias A.: 1995, 'Modelling the Effects of Climate Change and Climatic Variability on Crops at the Site Scale. Effects on Maize', in Harrison P. A., Butterfield, R. E., and Downing, T. E. (eds.), Climate Change and Agriculture in Europe. Assessment of Impacts and Adaptations, Research Report No. 9, University of Oxford, U.K., pp. 223–231.Google Scholar
  26. IPCC: 1996, 'Climate Change 1995: The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change', in Houghton, J. T., Meira Filho, L.G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell K. (eds.), Cambridge University Press, Cambridge, U.K., pp. 572.Google Scholar
  27. Jones C. A. and Kiniry, J. R. (eds.): 1986, 'CERES-Maize: A Simulation Model of Maize Growth and Development', Texas A&M University Press, 194 pp.Google Scholar
  28. Kiniry J. R. and Bockholt, A. J.: 1998, 'Maize and Sorghum Simulation in Diverse Texas Environments', Agron. J. 90, 682–687.Google Scholar
  29. Kiniry J. R., Williams, J. R., Vanderlip, R. L., Atwood, J. D., Reicosky, D. C., Mulliken, J., Cox, W. J., Mascagni, H. J., Hollinger, S. E., and Wiebold, W. J.: 1997, 'Evaluation of Two Maize Models for Nine U.S. Locations', Agron. J. 89, 421–426.Google Scholar
  30. Lambert D. K., McCarl, B. A., He, Q., Kaylen, M. S., Rosenthal, W., Chang, C. C., and Nayda, W. I.: 1995, 'Uncertain Yields in Sectoral Welfare Analysis: An Application to Global Warming', J. Agr. Appl. Econ. 27, 423–436.Google Scholar
  31. Littell R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D.: 1996, SAS System for Mixed Models, SAS Institute Inc., Cary, NC, U.S.A., 633 pp.Google Scholar
  32. Liu W. T. H., Botner, D. M., and Sakamoto, C. M.: 1989, 'Application of CERES-Maize Model to Yield Prediction of a Brazilian Maize Hybrid', Agric. For. Meteorol. 45, 299–312.Google Scholar
  33. Mall R. K. and Aggarwal, P. K.: 2002, 'Climate Change and Rice Yields in Diverse Agroenvironments of India. I. Evaluation of Impact Assessment Models', Clim. Change 52, 315–330.Google Scholar
  34. Mascagni, H. J. Jr., Kang, S. M., and Burns, D. R.: 1998, 'Influence of Planting Date and Hybrid Maturity on Corn Yield Performance and Plant Development on Sharkey Clay'.Google Scholar
  35. McCarl B. A., Chang, C. C., Atwood, J. D., and Nayda, W. I.: 2000, 'The U.S. Agricultural Sector Model', http://agecon.tamu.edu/faculty/mccarl/asm.html.Google Scholar
  36. McMaster G. S., Wilhelm, W. W., and Morgan, J. A.: 1992, 'Simulating Winter Wheat Shoot Apex Phenology', J. Agricultural Science Cambridge 119, 1–12.Google Scholar
  37. Mearns L. O., Carbone, G., Doherty, R. M., Tsvetsinskaya, E. A., McCarl, B. A., Adams, R. M., and McDaniel, L.: 2003a, 'The Uncertainty Due to Spatial Scale of Climate Scenarios in Integrated Assessments: An Example from U.S. Agriculture', Integrated Assessment, accepted.Google Scholar
  38. Mearns, L. O., Easterling, W., Hays, C., and Marx, D.: 2001a, 'Comparison of Agricultural Impacts of Climate Change Calculated from High and Low Resolution Climate Model Scenarios: Part I. The Uncertainty of Spatial Scale', Clim. Change 51, 131–172.Google Scholar
  39. Mearns L. O., Giorgi, F., Shields, C., and McDaniel, L.: 2003b, 'Climate Scenarios for the Southeastern U.S. Based on GCM and Regional Model Simulations', Clim. Change 60, 7–35.Google Scholar
  40. Mearns, L. O., Hulme, M., Carter, T. R., Leemans, R., Lal M., and Whetton, P.: 2001b, 'Climate Scenario Development', Chapter 13 in Houghton et al., IPCC Third Assessment Report. The Science of Climate Change, Cambridge University Press: Cambridge, pp. 739–768.Google Scholar
  41. Mearns L. O., Mavromatis, T., Tsvetsinskaya, E., Hays, C., and Easterling, W.E.: 1999, 'Comparative Responses of EPIC and CERES Crop Models to High and Low Spatial Resolution Climate Change Scenarios', J. Geophys. Res. 104, 6623–6646.Google Scholar
  42. Mearns L. O., Rosenzweig, C., and Goldberg, R.: 1992, 'Effect of Changes in Interannual Climatic Variability on CERES-Wheat Yields: Sensitivity and 2 × CO2 General Circulation Model Studies', Agric. For. Meteorol. 62, 159–189.Google Scholar
  43. Mearns L. O., Rosenzweig, C., and Goldberg, R.: 1996, 'The Effect of Changes in Daily and Interannual Climatic Variability on CERES-Wheat: A Sensitivity Study', Clim. Change 32, 257–292.Google Scholar
  44. Mearns L. O., Rosenzweig, C., and Goldberg, R.: 1997, 'Mean and Variance Change in Climate Scenarios: Methods, Agricultural Applications, and Measures of Uncertainty', Clim. Change 35, 367–396.Google Scholar
  45. Moulin, A. P. and Beckie, H. J.: 1993, 'Evaluation of the CERES and EPIC Models for Predicting Spring Wheat Grain Yield over Time', Can. J. Plant Sci. 73, 713–719.Google Scholar
  46. Pang X. P., Letey, J., and Wu, L.: 1997, 'Yield and Nitrogen Uptake Prediction by CERES-Maize Model Under Semiarid Conditions', Soil Sci. Soc. Am. J. 61, 254–256.Google Scholar
  47. Parry M., Rosenzweig, C., Iglesias, A., Fischer, G., and Livermore, M.: 1999, 'Climate Change and World Food Security: A New Assessment', Global Environ. Change 9, 51–67.Google Scholar
  48. Phillips J. G., Cane, M. A., and Rosenzweig, C.: 1998, 'ENSO, Seasonal Rainfall Patterns and Simulated Maize Yield Variability in Zimbabwe', Agric. For. Meteorol. 90, 39–50.Google Scholar
  49. Reilly, J. et al.: 2003, 'U.S. Agriculture and Climate Change: New Results', Clim. Change 57, 43–69.Google Scholar
  50. Ritchie J. T.: 1985, 'A User Oriented Model of the Soil Water Balance in Wheat', in Day W. and Atykin, R. K. (eds.), Wheat Growth and Modeling, Plenum Press.Google Scholar
  51. Ritchie J. T., Alocilja, E. C., Singh, U., and Uehara, G.: 1986, 'IBSNAT and the CERES-Rice Model', in Weather and Rice, Published by IRRI.Google Scholar
  52. Ritchie J. T. and Otter, S.: 1985, 'Description and Performance of CERES-Wheat: A User-Oriented Wheat Yield Model', Chapter 10 in Willis, W. O. (ed.) ARS Wheat Yield Project, United States Department of Agriculture, Agricultural Research Service, pp. 159–175.Google Scholar
  53. Rosenzweig C.: 1990, 'Crop Response to Climate Change in the Southern Great Plains: A Simulation Study', Professional Geographer 42 (1), 20–37.Google Scholar
  54. Rosenzweig C. and Parry, M. L.: 1994, 'Potential Impact of Climate Change onWorld Food Supply', Nature 367, 133–138.Google Scholar
  55. Southworth J., Pfeifer, R. A., Habeck, M., Randolph, J. C., Doering, O. C., and Rao, D. G.: 2002, 'The Sensitivity of Winter Wheat Yields in the Midwestern United States to Future Changes in Climate, Climate Variability, and CO2 Fertilization', Clim. Res. 22, 73–86.Google Scholar
  56. Southworth J., Randolph, J. C., Habeck, M., Doering, O. C., Pfeifer, R. A., Rao, D. G., and Johnston, J. J.: 2000, 'Consequences of Future Climate Change and Changing Climate Variability on Maize Yields in theMidwestern United States', Agriculture, Ecosystems and Environment 82, 139–158.Google Scholar
  57. Thomson, A. M., Brown, R. A., Ghan, S. J., Izaurralde, R. C., Rosenberg, N. J., and Leung, L. R.: 2002, 'Elevation Dependence of Winter Wheat Production in Eastern Washington State With Climate Change: A Methodological Study', Clim. Change 54 (1), 141–164.Google Scholar
  58. Tubiello F. N., Rosenzweig, C., Goldberg, R. A., Jagtap, S., and Jones, J. W.: 2002, 'Effects of Climate Change on U.S. Crop Production: Simulation Results Using Two Different GCMScenarios. Part I: Wheat, Potato, Maize, and Citrus', Clim. Res. 20 (3), 259–270.Google Scholar
  59. Tubiello F. N., Rosenzweig, C., Kimball, B. A., Pinter, P. J., Wall, G. W., Hunsaker, D. J., LaMorte, R. L., and Garcia, R. L.: 1999, 'Testing CERES-Wheat With Free-Air Carbon Dioxide Enrichment (FACE) Experiment Data: CO2 and Water Interactions', Agron. J. 91 (2), 247–255.Google Scholar
  60. USDA: 1994, 'State Soil Geographic (STATSGO) Data Base Data Use Information', U.S. Dept. of Agric., Soil Conser. Serv., National Soil Survey Center. Misc. Publ. No. 1392.Google Scholar
  61. Wu Y., Sakamoto, C. M., and Botner, D. M.: 1989, 'On the Application of the CERES-Maize Model to the North China Plain', Agric. For. Meteorol. 49, 9–22.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • E. A. Tsvetsinskaya
    • 1
    • 2
  • L. O. Mearns
    • 2
    Email author
  • T. Mavromatis
    • 3
  • W. Gao
    • 4
  • L. McDaniel
    • 2
  • M. W. Downton
    • 2
  1. 1.Center for Remote Sensing and Department of GeographyBoston UniversityBostonU.S.A.
  2. 2.The National Center for Atmospheric ResearchBoulderU.S.A
  3. 3.Department of Agricultural and Biological EngineeringUniversity of FloridaGainesvilleU.S.A
  4. 4.Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsU.S.A

Personalised recommendations