Journal of Sol-Gel Science and Technology

, Volume 28, Issue 2, pp 267–272 | Cite as

Proliferation and Insulin Secretion Function of Mouse Insulinoma Cells Encapsulated in Alginate/Sol-Gel Synthesized Aminopropyl-Silicate/Alginate Microcapsule

  • Shinji Sakai
  • Tsutomu Ono
  • Hiroyuki Ijima
  • Koei Kawakami


Alginate/aminopropyl-silicate/alginate microcapsules, ca. 15 μm in membrane thickness and ca. 500 μm in diameter, were prepared via sol-gel process. The aminopropyl-silicate membrane was derived from two silicone alkoxide precursors, tetramethoxysilane and 3-aminopropyl-trimethoxysilane on Ca-alginate micro gel beads. Pancreatic β-cell line (MIN6) cells were encapsulated in the microcapsule. The encapsulated MIN6 cells proliferated and formed spheroidal tissues in vitro. The diameter of the MIN6 spheroids increased to approximately 250 μm with an increase in the incubation period until the day 35. Storeptozotocin-induced diabetic mice became normoglycemia after implantation of the MIN6-enclosing microcapsules. The normoglycemic state remained until the retrieval of the implanted microcapsules for 1 month. These results indicate that the potential use of the alginate/aminopropyl-silicate/alginate microcapsule as a vehicle for a genetically engineered cell-enclosing therapeutic material delivery system.

aminopropyl-silicate cell encapsulation MIN6 microcapsule sol-gel process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.J. Brinker, K.D. Keefer, D.W. Schaefer, and C.S. Ashley, J. Non-Cryst. Sol. 48, 47 (1982).Google Scholar
  2. 2.
    C. Roux, J. Livage, K. Farhati, and L. Monjour, J. Sol-Gel Sci. Techn. 8, 663 (1997).Google Scholar
  3. 3.
    D.M. Liu and I.W. Chen, Acta. Mater. 47, 4535 (1999).Google Scholar
  4. 4.
    S. Fennouh, S. Guyon, J. Livage, and C. Roux, J. Sol-Gel Sci. Techn. 19, 647 (2000).Google Scholar
  5. 5.
    U. Georgi, H. Graebner, G. Roewer, and G. Wolf, J. Sol-Gel Sci. Techn. 13, 295 (1998).Google Scholar
  6. 6.
    I. Gill and A. Ballesteros, Trends Biotechnol. 18, 282 (2000).Google Scholar
  7. 7.
    E.J.A. Pope, J. Sol-Gel Sci. Techn. 8, 635 (1997).Google Scholar
  8. 8.
    G. Carturan, G. Dellagiacoma, M. Rossi, R. Dal Monte, and M. Muraca, SPIE Sol-Gel Opt. IV 336, 31 (1997).Google Scholar
  9. 9.
    S. Sakai, T. Ono, H. Ijima, and K. Kawakami, Biomaterials 22, 2827 (2001).Google Scholar
  10. 10.
    F. Lim and A.M. Sun, Science 210, 908 (1980).Google Scholar
  11. 11.
    S.M. Chia, K.W. Leong, J. Li, X. Xu, K. Zeng, P.N. Er, S. Gao, and H. Yu, Tissue Eng. 6, 481 (2000).Google Scholar
  12. 12.
    K. Aoki, K. Hakamada, Y. Umehara, K. Seino, Y. Itabashi, and M. Sasaki, Transplant. Proc. 32, 1118 (2000).Google Scholar
  13. 13.
    Y.L. Xue, J.M. Gao, Z.F. Xi, Z.F. Wang, X.J. Li, X. Cui, Y. Luo, C.H. Li, L.N. Wang, D. Zhou, R. Sun, and A.M. Sun, Artif. Organs 25, 131 (2001).Google Scholar
  14. 14.
    A. Gaumann, M. Laudes, B. Jacob, R. Pommersheim, C. Laue, W. Vogt, and J. Schrezenmeir, Exp. Toxicol. Pathol. 53, 35 (2001).Google Scholar
  15. 15.
    T.M.S. Chang, and S. Prakash, Mol. Med. Today 4, 221 (1998).Google Scholar
  16. 16.
    P.L. Chang, J.M. Van Raamsdonk, G. Hortelano, S.C. Barsoum, N.C. MacDonald, and T.L. Stockley, Trends Biotechnol. 17, 78 (1999).Google Scholar
  17. 17.
    A. Al-Hendy, G. Hortelano, G.S. Tannenbaum, and P.L. Chang, Hum. Gene Ther. 7, 61 (1996).Google Scholar
  18. 18.
    G. Hortelano, N. Xu, A. Vandenberg, J. Solera, P.L. Chang, and F.A. Ofosu, Hum. Gene Ther. 10, 1281 (1999).Google Scholar
  19. 19.
    B. Ríhová, Adv. Drug Deliver. Rev. 42, 65 (2000).Google Scholar
  20. 20.
    H. Uludag, P. De Vos, and P.A. Tresco, Adv. Drug. Deliv. Rev. 42, 29 (2000).Google Scholar
  21. 21.
    A.M. Sun, G.M. O'shea, and M.F.A. Goosen, Appl. Biochem. Biotechnol. 10, 87 (1984).Google Scholar
  22. 22.
    I. Lacik, M. Brissova, A.C. Powers, A.V. Anilkumar, and T.J. Wang, J. Biomed. Mater. Res. 39, 52 (1998).Google Scholar
  23. 23.
    M. Darrabie, B.K. Freeman, W.F. Kendall, H.A. Hobbs, and E.C. Opara, J. Biomed. Mater. Res. 54, 396 (2000).Google Scholar
  24. 24.
    Y.J. Wang, Mater. Sci. Eng. C 13, 59 (2000).Google Scholar
  25. 25.
    J. Miyazaki, K. Araki, E. Yamato, H. Ikegami, T. Asano, Y. Shibasaki, Y. Oka, and K. Yamamura, Endocrinology 127, 126 (1990).Google Scholar
  26. 26.
    S. Sakai, T. Ono, H. Ijima, and K. Kawakami, J. Membrane. Sci. 202, 73 (2002).Google Scholar
  27. 27.
    N. Kinoshita, Y. Echigo, S. Shinohara, Y. Gu, J. Miyazaki, K. Inoue, and M. Imamura, Cell. Transplant. 10, 473 (2001).Google Scholar
  28. 28.
    G. Arcangeli, V. Cupelli, and G. Giuliano, Sci. Total Environ. 270, 135 (2001).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Shinji Sakai
    • 1
  • Tsutomu Ono
    • 1
  • Hiroyuki Ijima
    • 1
  • Koei Kawakami
    • 1
  1. 1.Department of Chemical Engineering, Faculty of EngineeringKyushu UniversityHigashi-ku, FukuokaJapan

Personalised recommendations