Journal of Paleolimnology

, Volume 30, Issue 3, pp 273–289

9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna

  • Oliver Heiri
  • André F. Lotter
Article

Abstract

Subfossil chironomid analysis was applied to a sediment core from Sägistalsee, a small lake at present-day tree-line elevation in the Swiss Alps. During the whole 9000-year stratigraphy the chironomid fauna was dominated by taxa typical of alpine lakes. Major faunistic trends were caused by changes in accumulation rates of three taxa, namely Procladius, Stictochironomus, and Tanytarsus lugens-type. In the early Holocene Procladius was the dominant taxon. In younger samples, Stictochironomus tended to have as high or higher abundances and both taxa showed an increase in accumulation rates. A possible cause of this succession is the decrease of lake-water depth due to infilling of the lake basin and changes in associated limnological parameters. The immigration of Picea (spruce) at ca. 6500 cal. 14C yrs BP and the resulting denser woodlands in the lake's catchment may have promoted this trend. During three phases, from ca. 70–1450, 1900–2350, and 3500–3950 cal. BP, remains of Procladius, Stictochironomus, and Tanytarsus lugens-type are absent from the lake sediment, whereas other typical lake taxa and stream chironomids show no change in accumulation rate. Together with sediment chemistry data, this suggests that increased oxygen deficits in the lake's bottom water during these intervals caused the elimination of chironomids living in the deepest part of the lake. All three periods coincide with increased human activity in the catchment, as deduced from palaeobotanical evidence. Therefore, enhanced nutrient loading of the lake due to the presence of humans and their livestock in the catchment is the most likely cause of the increased anoxia. The chironomid fauna reacted the same way to intensive pasturing during the last ca. 1500 years as to Bronze Age clear-cutting and more moderate pasturing during the Bronze, Iron, and Roman Ages, suggesting that alpine lake ecosystems can be extremely sensitive to human activity in the catchment. On the other hand, the chironomid assemblages show a considerable amount of resilience to human disturbance, as the chironomid fauna reverted to the pre-impact stage after the first two periods of human activity. In recent years, even though pasturing decreased again, the chironomid fauna has only partly recovered. This is possibly due to other human-induced changes in the lake ecosystem, e.g., the stocking of the lake with fish. The chironomid stratigraphy is difficult to interpret climatologically as the strongest changes in chironomid-inferred temperatures coincide with periods of intensive human activity in the catchment.

Subfossil Chironomidae Holocene Alpine lake ecosystem Sensitivity Human impact Climate Anoxia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alm T. and Willassen E. 1993. Late Weichselian Chironomidae (Diptera) stratigraphy of lake Nedre Æråsvatn, Andøya, Northern Norway. Hydrobiologia 264: 21–32.Google Scholar
  2. Bennett K.D. 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132: 155–170.Google Scholar
  3. Berg M.B. 1995. Larval food and feeding behaviour. In: Armitage P.D., Cranston P.S. and Pinder L.C.V. (eds), The Chironomidae. Chapman and Hall, London, pp. 136–168.Google Scholar
  4. Birks H.J.B. and Gordon A.D. 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London, 317 pp.Google Scholar
  5. Bretschko G. 1995. Opportunities of high alpine research, the lake ‘Vorderer Finstertaler See’ as an example (Kühtai, Tirol, 2237 m a.s.l.). Limnologica 25: 105–108.Google Scholar
  6. Brodin Y. 1982. Palaeoecological studies of the recent development of the lake Växjösjön IV. Interpretation of the eutrophication process through the analysis of subfossil chironomids. Arch. Hydrobiol. 93: 313–326.Google Scholar
  7. Brodin Y.W. 1990. Midge fauna development in acidified lakes in northern Europe. Phil. Trans. r. Soc. Lond. B 327: 295–298.Google Scholar
  8. Brooks S.J. 1996. Three thousand years of environmental history in a Cairngorms Lochan revealed by analysis of non-biting midges (Insecta: Diptera: Chironomidae). Bot. J. Scotl. 48: 89–98.Google Scholar
  9. Buskens R.F.M. 1987. The chironomid assemblages in shallow lentic waters differing in acidity, buffering capacity and trophic level in the Netherlands. Ent. scand. Suppl. 29: 217–224.Google Scholar
  10. Chapin F.S. III and Körner C. 1995. Patterns, causes, changes, and consequences of biodiversity in arctic and alpine ecosystems. Ecol. Stud. 113: 313–320.Google Scholar
  11. Cranston P.S. 1982. A key to the larvae of the British Orthocladiinae (Chironomidae). Freshwat. biol. Assoc. sci. Publ. 45: 1–152.Google Scholar
  12. Currie D.C. and Walker I.R. 1992. Recognition and paleohydrologic significance of fossil black fly larvae, with a key to the Nearctic genera (Diptera: Simuliidae). J. Paleolim. 7: 37–54.Google Scholar
  13. Dinsmore W.P. and Prepas E.E. 1997. Impact of hypolimnetic oxygenation on profundal invertebrates in a eutrophic lake in central Alberta. II. Changes in Chironomus spp. abundance and biomass. Can. J. Fish. aquat. Sci. 54: 2170–2181.Google Scholar
  14. Döscher A., Gäggeler H.W., Schotterer U. and Schwikowski M. 1995. A 130 year deposition record of sulfate, nitrate and chloride from a high-alpine glacier. Wat. Air Soil Pollut. 85: 603–609.Google Scholar
  15. Fedele F.G. and Wick L. 1996. Glacial/postglacial transition south of Splügen pass: environment and human activity. Il Quaternario 9: 541–550.Google Scholar
  16. Frey D.G. 1988. Littoral and offshore communities of diatoms, cladocerans, and dipterous larvae, and their interpretation in paleolimnology. J. Paleolim. 1: 179–191.Google Scholar
  17. Fritz S.C. 1989. Lake development and limnological response to prehistoric and historic land use in Diss, Norfolk, U.K. J. Ecol. 77: 182–202.Google Scholar
  18. Grabherr G., Gottfried M., Gruber A. and Pauli H. 1995. Patterns and current changes in Alpine plant diversity. Ecol. Stud. 113: 167–181.Google Scholar
  19. Grimås U. and Nilsson N.-A. 1962. Nahrungsfauna und kanadische Seeforelle in Berner Gebirgsseen. Schweiz. Z. Hydrol. 24: 49–75.Google Scholar
  20. Gross T. 1999. Biodiversity and sustainable development in mountains. In: Price M.F. (ed.), Global Change in the Mountains. Parthenon Publishing, New York: 4–6.Google Scholar
  21. Guilizzoni P., Marchetto A., Lami A., Cameron N.G., Appleby P.G., Rose N.L., Schnell Ø.A., Belis C.A., Giorgis A. and Guzzi L. 1996. The environmental history of a mountain lake (Lago Paione Superiore, Central Alps, Italy) for the last c. 100 years: a multidisciplinary palaeolimnological study. J. Paleolim. 15: 245–264.Google Scholar
  22. Guthruf J., Guthruf-Seiler K. and Zeh M. 1999. Kleinseen im Kanton Bern. Gewässer und Bodenschutzlabor des Kantons Bern (GBL), Bern, 229 pp.Google Scholar
  23. Haas J.N., Richoz I., Tinner W. and Wick L. 1998. Synchronous Holocene climate oscillations recorded on the Swiss Plateau and at timberline in the Alps. Holocene 8: 301–309.Google Scholar
  24. Haworth E.Y. 1985. 'The highly nervous system of the English lakes': Aquatic ecosystem sensitivity to external changes, as demonstrated by diatoms. Freshwat. biol. Assoc. ann. Report 53: 60–79.Google Scholar
  25. Heiri O. 2001. Holocene Palaeolimnology of Swiss Mountain Lakes Reconstructed Using Subfossil Chironomid Remains: Past Climate and Prehistoric Human Impact on Lake Ecosystems. PhD Diss., University of Bern, Bern, 113 pp.Google Scholar
  26. Heiri O. and Lotter A.F. 2001. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J. Paleolim. 26: 343–350.Google Scholar
  27. Henrikson L., Olofson J.B. and Oscarson H.G. 1982. The impact of acidification on Chironomidae (Diptera) as indicated by subfossil stratification. Hydrobiologia 86: 223–229.Google Scholar
  28. Hirvenoja M. and Hirvenoja E. 1988. Corynoneura brundini spec. nov. Ein Beitrag zur Systematik der Gattung Corynoneura (Diptera, Chironomidae). Spixiana/Suppl. 14: 213–238.Google Scholar
  29. Hofmann W. 1971a. Zur Taxonomie und Palökologie subfossiler Chironomiden (Dipt.) in Seesedimenten. Arch. Hydrobiol. Beih. 6: 1–50.Google Scholar
  30. Hofmann W. 1971b. Die postglaziale Entwicklung der Chironomidenund Chaoboriden-Fauna (Dipt.) des Schöhsees. Arch. Hydrobiol./Suppl. 40: 1–74.Google Scholar
  31. Hofmann W. 1986. Chironomid analysis. In: Berglund B.E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley and Sons, Chichester, pp. 715–727.Google Scholar
  32. Hofmann W. 1999. Holocene succession and morphological variation of the Bosmina (Eubosmina) taxa of Plusssee (northern Germany). Arch. Hydrobiol. spec. Issues Advanc. Limnol. 54: 359–372.Google Scholar
  33. Hutchinson G.E. 1975. A Treatise on Limnology. Volume I: Geography, Physics, and Chemistry. J. Wiley and Sons, New York, 137 pp.Google Scholar
  34. Iovino A.J. 1975. Extant Chironomid Populations and the Representativeness and Nature of Their Remains in Lake Sediments. PhD Diss., Indiana University, 54 pp.Google Scholar
  35. Itkonen A., Marttila V., Meriläinen J.J. and Salonen V.-P. 1999. 8000-year history of palaeoproductivity in a large boreal lake. J. Paleolim. 21: 271–294.Google Scholar
  36. Kansanen P.H. 1985. Assessment of pollution history from recent sediments in Lake Vanajavesi, southern Finland. II. Changes in the Chironomidae, Chaoboridae and Ceratopogonidae (Diptera) fauna. Ann. zool. fennici 22: 57–90.Google Scholar
  37. Koinig K., Shotyk W., Lotter A.F., Ohlendorf C. and Sturm M. 2003. 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake — the role of climate, vegetation and land-use history. J. Paleolim. 30: 307–320.Google Scholar
  38. Kovach J.S. 1995. Multivariate data analysis. In: Maddy D. and Brew J.S. (eds), Statistical Modelling of Quaternary Science Data. Technical Guide 5, Quaternary Science Association, Cambridge, pp. 1–38.Google Scholar
  39. Lami A., Marchetto A., Guilizzoni P., Giorgis A. and Massaferro J. 1994. Paleolimnological records of carotenoids and carbonaceous particles in sediments of some lakes in the Southern Alps. Hydrobiologia 274: 57–64.Google Scholar
  40. Legendre P. and Legendre L. 1998. Numerical Ecology. Elsevier Science B.V., Amsterdam, 853 pp.Google Scholar
  41. Levesque A.J., Mayle F.E., Walker I.R. and Cwynar L.C. 1993. A previously unrecognized late-glacial cold event in eastern North America. Nature 361: 623–626.Google Scholar
  42. Lindegaard C. 1995. Classification of water-bodies and pollution. In: Armitage P.D., Cranston P.S. and Pinder L.C.V. (eds), The Chironomidae. Chapman and Hall, London, pp. 385–404.Google Scholar
  43. Little J.L. and Smol J.P. 2000. Changes in fossil midge (Chironomidae) assemblages in response to cultural activities in a shallow, polymictic lake. J. Paleolim. 23: 207–212.Google Scholar
  44. Lotter A.F. and Birks H.J.B. 2003. Holocene sediments of Sägistalsee, a small lake at the present-day tree-line in the Swiss Alps. J. Paleolim. 30: 253–260.Google Scholar
  45. Lotter A.F., Birks H.J.B., Hofmann W. and Marchetto A. 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.Google Scholar
  46. Lotter A.F., Birks H.J.B., Hofmann W. and Marchetto A. 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.Google Scholar
  47. Massaferro J. and Corley J. 1998. Environmental disturbance and chironomid palaeodiversity: 15 kyr BP of history at Lake Mascardi, Patagonia, Argentina. Aquat. Conserv. 8: 315–323.Google Scholar
  48. Meyer E. 1990. A simple subsampling device for macroinvertebrates with general remarks on the processing of stream benthos samples. Arch. Hydrobiol. 117: 309–318.Google Scholar
  49. Moog O. 1995. Fauna Aquatica Austriaca. Abteilung für Hydrobiologie, Fischereiwirtschaft und Aquakultur der Universität für Bodenkultur, Wien.Google Scholar
  50. Müller B., Lotter A.F., Sturm M. and Ammann A. 1998. Influence of catchment quality and altitude on the water and sediment composition of 68 small lakes in Central Europe. Aquat. Sci. 60: 316–337.Google Scholar
  51. Niessen F. and Sturm M. 1987. Die Sedimente des Baldeggersees (Schweiz) — Ablagerungsraum und Eutrophierungsentwicklung während der letzten 100 Jahre. Arch. Hydrobiol. 108: 365–383.Google Scholar
  52. Ohlendorf C., Sturm M. and Hausmann S. 2003. Natural environmental changes and human impact reflected in sediments of a high alpine lake in Switzerland. J. Paleolim. 30: 297–306.Google Scholar
  53. Oliver D.R. 1971. Life history of Chironomidae. Ann. Rev. Ent. 16: 211–230.Google Scholar
  54. Pechlaner R. 1966. Die Finstertaler Seen (Kühtai, Österreich) I. Morphometrie, Hydrographie, Limnophysik und Limnochemie. Arch. Hydrobiol. 62: 165–230.Google Scholar
  55. Pellatt M.G., Smith M.J., Mathewes R.W., Walker I.R. and Palmer S.L. 2000. Holocene treeline and climate change in the subalpine zone near Stoyoma Mountain, Cascade Mountains, southwestern British Columbia, Canada. Arct. antarct. alp. Res. 32: 73–83.Google Scholar
  56. Peterson B.V., Baez M. and Sinclair B.J. 1989. A redescription of the adults and larva of Thaumalea subafricana (Diptera: Thaumaleidae), and first description of the pupa. Ent. News 100: 49–58.Google Scholar
  57. Pinder L.C.V. 1986. Biology of freshwater Chironomidae. Ann. Rev. Ent. 31: 1–23.Google Scholar
  58. Psenner R. and Schmidt R. 1992. Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356: 781–783.Google Scholar
  59. Raddum G.G. and Sæther O.A. 1981. Chironomid communities in Norwegian lakes with different degrees of acidification. Verh. internat. Verein. Limnol. 21: 399–405.Google Scholar
  60. Reiss F. 1968. Verbreitung lakustrischer Chironomiden (Diptera) des Alpengebietes. Ann. zool. fenn. 5: 119–125.Google Scholar
  61. Rieradevall M. and Brooks S.J. 2001. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. J. Paleolim. 25: 81–99.Google Scholar
  62. Rück A., Walker I.R. and Hebda R. 1998. A paleolimnological study of Tugulnuit Lake, British Columbia, Canada, with special emphasis on river influence as recorded by chironomids in the lake's sediment. J. Paleolim. 19: 63–75.Google Scholar
  63. Sæther O.A. 1979. Chironomid communities as water quality indicators. Holarct. Ecol. 2: 65–74.Google Scholar
  64. Sandman O., Eskonen K. and Liehu A. 1990. The eutrophication history of Lake Särkinen, Finland and the effects of lake aeration. Hydrobiologia 214: 191–199.Google Scholar
  65. Schakau B. 1990. Stratigraphy of the fossil Chironomidae (Diptera) from Lake Grasmere, South Island, New Zealand, during the last 6000 years. Hydrobiologia 214: 213–221.Google Scholar
  66. Scheffer M. 1998. The Ecology of Shallow Lakes. Chapman and Hall, London, 357 pp.Google Scholar
  67. Schmid P.E. 1993. A key to the larval Chironomidae and their instars from Austrian Danube region streams and rivers with particular reference to a numerical taxonomic approach. Part I. Diamesinae, Prodiamesinae and Orthocladiinae, Wasser und Abwasser Suppl. 3/93: 1–514.Google Scholar
  68. Serra-Tosio B. 1978. Les Diptères chironomidés du Lac de Mont Coua (Parc National de la Vanoise). Travaux Scientifiques du Parc National de la Vanoise 9: 141–145.Google Scholar
  69. Skjelkvale B.L. and Wright R.F. 1998. Mountain lakes; Sensitivity to acid deposition and global change. Ambio 27: 280–286.Google Scholar
  70. Smith M.J., Pellatt M.G., Walker I.R. and Mathewes R.W. 1998. Postglacial changes in chironomid communities and inferred climate near treeline at Mount Stoyoma, Cascade mountains, southwestern British Columbia, Canada. J. Paleolim. 20: 277–293.Google Scholar
  71. Spengler D. 1973. Limnologische, hydrologische und morphologische Untersuchungen im Faulhorngebiet (Berner Oberland). PhD Diss., University of Bern, Bern, 155 pp.Google Scholar
  72. Steiner G. 1911. Biologische Studien an Seen der Faulhornkette im Berner Oberland. PhD Diss., University of Bern, Bern.Google Scholar
  73. ter Braak C.J.F. 1987. Ordination. In: Jongman R.H., ter Braak C.J.F. and van Tongeren O.F.R. (eds), Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen, pp. 91–173.Google Scholar
  74. ter Braak C.J.F. and Prentice I.C. 1988. A theory of gradient analysis. Adv. ecol. Res. 18: 271–317.Google Scholar
  75. ter Braak C.J.F. and Smilauer P. 1998. CANOCO Reference Manual and User's Guide to CANOCO for Windows. Centre for Biometry Wageningen, Wageningen, 352 pp.Google Scholar
  76. Tinner W., Ammann B. and Germann P. 1996. Treeline fluctuations recorded for 12,500 years by soil profiles, pollen, and plant macrofossils in the Central Swiss Alps. Arct. alp. Res. 28: 131–147.Google Scholar
  77. Uutala A.J. 1990. Chaoborus (Diptera: Chaoboridae) mandibles — paleolimnological indicators of the historical status of fish populations of acid sensitive lakes. J. Paleolim. 4: 139–152.Google Scholar
  78. Wagner R. 1997. Diptera, Thaumaleidae. In: Nilsson A.N. (ed.), Aquatic Insects of Northern Europe, Volume 2. Apollo Books, Stenstrup DK, pp. 187–191.Google Scholar
  79. Walker I.R. 1987. Chironomidae (Diptera) in paleolimnology. Quat. Sci. Rev. 6: 29–40.Google Scholar
  80. Walker I.R. 1995. Chironomids as indicators of past environmental change. In: Armitage P.D., Cranston P.S. and Pinder L.C.V. (eds), The Chironomidae. Chapman and Hall, London, pp. 405–422.Google Scholar
  81. Walker I.R. and Mathewes R.W. 1989a. Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. J. Paleolim. 2: 61–80.Google Scholar
  82. Walker I.R. and Mathewes R.W. 1989b. Early postglacial chironomid succession in southwestern British Columbia, Canada, and its paleoenvironmental significance. J. Paleolim. 2: 1–14.Google Scholar
  83. Walker I.R., Mott R.J. and Smol J.P. 1991a. Allerød-Younger Dryas lake temperatures from midge fossils in Atlantic Canada. Science 253: 1010–1012.Google Scholar
  84. Walker I.R., Levesque A.J., Cwynar L.C. and Lotter A.F. 1997. An expanded surface-water paleotemperature inference model for use with fossil midges from eastern Canada. J. Paleolim. 18: 165–178.Google Scholar
  85. Walker I.R., Smol J.P., Engstrom D.R. and Birks H.J.B. 1991b. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. aquat. Sci. 48: 975–987.Google Scholar
  86. Warwick W.F. 1980. Paleolimnology of the Bay of Quinte, Lake Ontario: 2800 years of cultural influence. Can. Bull. Fish. aquat. Sci. 206: 1–117.Google Scholar
  87. Wathne B.M., Patrick S.T., Monteith D. and Barth H. 1995. AL:PE — Acidification of Mountain Lakes: Palaeolimnology and Ecology. AL:PE 1 report for the period April 1991-April 1993. Ecosystem Research Report, Volume 9, European Commission, Directorate-General for Science, Research and Development, Luxembourg, 296 pp.Google Scholar
  88. Welch H. 1991. Comparison between lakes and seas during the Arctic winter. Arct. alp. Res. 23: 11–23.Google Scholar
  89. Wick L. and Tinner W. 1997. Vegetation changes and timberline fluctuations in the Central Alps as indicators of Holocene climate fluctuations. Arct. alp. Res. 29: 445–458.Google Scholar
  90. Wick L., van Leeuwen J.F.N., van der Knaap W.O. and Lotter A.F. 2003. Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. J. Paleolim. 30: 261–272.Google Scholar
  91. Wiederholm T. 1981. Associations of lake-living Chironomidae. Schweiz. Z. Hydrol. 43: 140–150.Google Scholar
  92. Wiederholm T. (ed.) 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part I. Larvae. Ent. scand. Suppl. 19: 1–457.Google Scholar
  93. Wiederholm T. 1984. Responses of aquatic insects to environmental pollution. In: Resh V.H. and Rosenberg D.M. (eds), The Ecology of Aquatic Insects. Praeger Publishers, New York, pp. 508–557.Google Scholar
  94. Wiederholm T. (ed.) 1989. Chironomidae of the Holarctic region. Keys and diagnoses. Part III. Adult males. Ent. scand. Suppl. 34: 1–532.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Oliver Heiri
    • 1
  • André F. Lotter
    • 1
  1. 1.University of Utrecht, Laboratory of Palaeobotany and Palynology, Budapestlaan 4UtrechtThe Netherlands

Personalised recommendations