Advertisement

Climatic Change

, Volume 60, Issue 3, pp 217–242 | Cite as

Pattern Scaling: An Examination of the Accuracy of the Technique for Describing Future Climates

  • Timothy D. Mitchell
Article

Abstract

A fully probabilistic, or risk, assessment of future regional climate changeand its impacts involves more scenarios of radiative forcing than can besimulated by a general (GCM) or regional (RCM) circulation model. Additionalscenarios may be created by scaling a spatial response pattern from a GCM bya global warming projection from a simple climate model. I examine thistechnique, known as pattern scaling, using a particular GCM (HadCM2).Thecritical assumption is that there is a linear relationship between the scaler(annual global-mean temperature) and the response pattern. Previous studieshave found this assumption to be broadly valid for annual temperature; Iextend this conclusion to precipitation and seasonal (JJA) climate. However,slight non-linearities arise from the dependence of the climatic response onthe rate, not just the amount, of change in the scaler. These non-linearitiesintroduce some significant errors into the estimates made by pattern scaling,but nonetheless the estimates accurately represent the modelled changes. Aresponse pattern may be made more robust by lengthening the period from whichit is obtained, by anomalising it relative to the control simulation, and byusing least squares regression to obtain it. The errors arising from patternscaling may be minimised by interpolating from a stronger to a weaker forcingscenario.

Keywords

Precipitation Linear Relationship Global Warming Regional Climate Future Climate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcamo, J., Bouwman, A., Edmonds, J., Grubler, A., Morita, T., and Sugandhy, A.: 1995, ‘An Evaluation of the IPCC IS92 Emission Scenarios’, in Houghton, J. T., Meira Filho, L. G., Bruce, J., Hoesung Lee, B. A., Callander, B. A., Haites, E., Harris, N., and Maskell, K. (eds.), Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, Cambridge University Press.Google Scholar
  2. Allen, M.: 1999, ‘Do-it-yourself Climate Prediction’, Nature 401, 642.Google Scholar
  3. Allen, M. R., Stott, P. A., Mitchell, J. F. B., Schnur, R., and Delworth, T. L.: 2000, ‘Quantifying the Uncertainty in Forecasts of Anthropogenic Climate Change’, Nature 407, 617–620.Google Scholar
  4. Andronova, N. G. and Schlesinger, M. E.: 2001, ‘Objective Estimation of the Probability Density Function for Climate Sensitivity’, J. Geophys. Res. 106, 22605–22612.Google Scholar
  5. CSIRO: 2001, Climate Projections for Australia, CSIRO Atmospheric Research, Melbourne, p. 8.Google Scholar
  6. Grübler, A.: 1999, ‘Uncertainties in Social and Economic Projections’, in Carter, T. R., Hulme, M., and Viner, D. (eds.), Representing Uncertainty in Climate Change Scenarios and Impact Studies, ECLAT Report Number 1, CRU, Norwich, U.K.Google Scholar
  7. Grübler, A. and Nakicenovic, N.: 2001, ‘Identifying Dangers in an Uncertain Climate’, Nature 412, 15.Google Scholar
  8. Harvey, D., Gregory, J., Hoffert, M., Jain, A., Lal, M., Leemans, R., Raper, S., Wigley, T., and de Wolde, J.: 1997, An Introduction to Simple Climate Models Used in the IPCC Second Assessment Report, IPCC.Google Scholar
  9. Hulme, M. and Carter, T. R.: 1999, ‘Representing Uncertainty in Climate Change Scenarios and Impact Studies’, in Carter, T. R., Hulme, M., and Viner, D. (eds.), Representing Uncertainty in Climate Change Scenarios and Impact Studies, ECLAT Report Number 1, CRU, Norwich, U.K.Google Scholar
  10. Hulme, M. and Jenkins, G. J.: 1998, Climate Change Scenarios for the U.K.: Scientific Report, UKCIP Technical Report Number 1, CRU, Norwich.Google Scholar
  11. Hulme, M., Wigley, T.M. L., Barrow, E.M., Raper, S. C. B., Centella, A., Smith, C., and Chipanshi, A. C.: 2000, Using a Climate Scenario Generator for Vulnerability and Adaptation Assessments: MAGICC and SCENGEN Version 2.4 Workbook, Climatic Research Unit, Norwich.Google Scholar
  12. Hulme, M., Jenkins, G. J., Lu, X., Turnpenny, J. R., Mitchell, T. D., Jones, R. G., Lowe, J., Murphy, J. M., Hassell, D., Boorman, P., McDonald, R., and Hill, S.: 2002, Climate Change Scenarios for the United Kingdom: The UKCIP02 Scientific Report, Tyndall Centre for Climate Change Research, Norwich, U.K.Google Scholar
  13. Huntingford, C. and Cox, P. M.: 2000, ‘An Analogue Model to Derive Additional Climate Change Scenarios from Existing GCM Simulations’, Clim. Dyn. 16, 575–586.Google Scholar
  14. IPCC, 2000: ‘Summary for Policymakers’, in Nakicenovic, N. and Swart, R. (eds.), Emissions Scenarios, Cambridge University Press.Google Scholar
  15. IPCC: 2001, Climate Change 2001: The Scientific Basis, Cambridge University Press.Google Scholar
  16. IPCC-TGCIA: 1999, Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment. Version 1, prepared by Carter, T. R., Hulme, M., and Lal, M., IPCC Task Group on Scenarios for Climate Impact Assessment.Google Scholar
  17. Johns, T. C., Carnell, R. E., Crossley, J. F., Gregory, J. M., Mitchell, J. F. B., Senior, C. A., Tett, S. F. B., and Wood, R. A.: 1997, ‘The Second Hadley Centre Coupled Ocean-atmosphere GCM: Model Description, Spinup, and Validation’, Clim. Dyn. 13, 103–134.Google Scholar
  18. Jonas, M., Fleischmann, K., Ganopolski, A. V., Krabec, J., Sauer, U., Olendrznski, K., Petoukhov, V. K., and Shaw, R. W.: 1996, ‘A Fast Turnaround: Combining the Results of IMAGE and a GCM’, Clim. Change 34, 479–512.Google Scholar
  19. Jones, R. N.: 2000, ‘Analysing the Risk of Climate Change Using an Irrigation Demand Model’, Clim. Res. 14, 89–100.Google Scholar
  20. Katz, R.W.: 2002, ‘Techniques for Estimating Uncertainty in Climate Change Scenarios and Impact Studies’, Clim. Res. 20, 167–185.Google Scholar
  21. Leemans, R.: 1999, ‘Uncertainties in Integrated Assessment Models’, in Carter, T. R., Hulme, M., and Viner, D. (eds.), Representing Uncertainty in Climate Change Scenarios and Impact Studies, ECLAT Report Number 1, CRU, Norwich, U.K.Google Scholar
  22. Lempert, R. and Schlesinger, M. E.: 2001, ‘Climate-Change Strategy Needs to Be Robust’, Nature 412, 375.Google Scholar
  23. Lempert, R., Schlesinger, M. E., Bankes S. C., and Andronova N. G.: 2000, ‘The Impacts of Climate Variability on Near-Term Policy Choices and the Value of Information’, Clim. Change 45, 129–161.Google Scholar
  24. Mitchell, J. F. B. and Gregory, J. M.: 1992, ‘Climatic Consequences of Emissions and a Comparison of IS92a and SA90’, in Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.), Climate Change 1992: Supplement to the IPCC Scientific Assessment, Cambridge University Press.Google Scholar
  25. Mitchell, J. F. B., Manabe, S., Tokioka, T., and Meleshko, V.: 1990, ‘Equilibrium Climate Change’, in Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.), Climate Change: The IPCC Scientific Assessment, Cambridge University Press.Google Scholar
  26. Mitchell, J. F. B., Johns, T. C., Eagles, M., Ingram, W. J., and Davis, R. A.: 1999, ‘Towards the Construction of Climate Change Scenarios’, Clim. Change 41, 547–581.Google Scholar
  27. Mitchell, J. F. B., Johns, T. C., Ingram, W. J., and Lowe, J. A.: 2000, ‘The Effect of Stabilising Atmospheric Carbon Dioxide Concentrations on Global and Regional Climate Change’, Geophys. Res. Lett. 27, 2977–2980.Google Scholar
  28. Mitchell, T. D. and Hulme, M.: 1999, ‘Predicting Regional Climate Change: Living with Uncertainty’, Prog. Phys. Geog. 23, 57–78.Google Scholar
  29. Mitchell, T. D., Carter, T., Hulme, M., New, M., and Jones, P.: 2003, ‘A Comprehensive Set of Climate Scenarios for Europe and the Globe’, in preparation.Google Scholar
  30. Murphy, J.M. and Mitchell, J. F. B.: 1995, ‘Transient Response of the Hadley Centre Coupled Ocean-Atmosphere Model to Increasing Carbon Dioxide. Part II: Spatial and Temporal Structure of Response’, J. Climate 8, 57–80.Google Scholar
  31. New, M. and Hulme, M.: 2000, ‘Representing Uncertainty in Climate Change Scenarios: A Monte-Carlo Approach’, Integrated Assess. 1, 203–213.Google Scholar
  32. Oglesby, R. J. and Saltzman, B.: 1992, ‘Equilibrium Climate Statistics of a GCM as a Function of Atmospheric Carbon Dioxide. Part I: Geographic Distributions of Primary Variables’, J. Climate 5, 66–92.Google Scholar
  33. Palmer, T. N.: 2001, ‘A Nonlinear Dynamical Perspective on Model Error: A Proposal for Non-Local Stochastic-Dynamic Parametrization in Weather and Climate Prediction Models’, Quart. J. Roy. Meteorol. Soc. 127, 279–304, Part B.Google Scholar
  34. Pittock, A. B.: 1993, ‘Climate Scenario Development’, in Jakeman, A. J., Beck, M. B., and McAleer, M. J. (eds.), Modelling Change in Environmental Systems, Wiley, Chichester.Google Scholar
  35. Raper, S. C. B., Gregory, J. M., and Osborn, T. J.: 2001, ‘Use of an Upwelling-Diffusion Energy Balance Climate Model to Simulate and Diagnose A/OGCM Results’, Clim. Dyn. 17, 601–613.Google Scholar
  36. Reynard, N. S., Prudhomme, C., and Crooks, S. M.: 2001, ‘The Flood Characteristics of Large U.K. Rivers: Potential Effects of Changing Climate and Land Use’, Clim. Change 48, 343–359.Google Scholar
  37. Rotmans, J., Hulme, M., and Downing, T. E.: 1994, ‘Climate-Change Implications for Europe an Application of the ESCAPE Model’, Global Environ. Change 4, 97–124.Google Scholar
  38. Santer, B. D., Wigley, T. M. L., Schlesinger, M. E., and Mitchell, J. F. B.: 1990, Developing Climate Scenarios from Equilibrium GCM Results, MPI Report Number 47, Hamburg.Google Scholar
  39. Schlesinger, M. E., Malyshev, S., Rozanov, E., Yang, F., Andronova, N. G., de Vries, B., Grübler, A., Jiang, K., Masui, T., Morita, T., Penner, J., Pepper, W., Sankovski, A., and Zhang, Y.: 1997, ‘Geographical Distributions of Temperature Change for Scenarios of Greenhouse Gas and Sulfur Dioxide Emissions’, Technol. Forecast. Social Change 65, 167–193.Google Scholar
  40. Schneider, S.: 2001, ‘What is Dangerous Climate Change?’, Nature 411, 17.Google Scholar
  41. Schneider, S.: 2002, ‘Can I Estimate the Likelihood of Climatic Changes at 2100?’, Clim. Change 52, 441–451.Google Scholar
  42. Senior, C. A. and Mitchell, J. F. B.: 2000, ‘The Time-Dependence of Climate Sensitivity’, Geophys. Res. Lett. 27, 2685–2688.Google Scholar
  43. Shackley, S., Young, P., Parkinson, S., and Wynne, B.: 1998, ‘Uncertainty, Complexity and Concepts of Good Science in Climate Change Modelling: Are GCMs the Best Tools?’, Clim. Change 38, 159–205.Google Scholar
  44. Stott, P. A. and Kettleborough, J. A.: 2002, ‘Origins and Estimates of Uncertainty in Predictions of Twenty-First Century Temperature Rise’, Nature 416, 723–726.Google Scholar
  45. Tett, S. F. B., Mitchell, J. F. B., Parker, D. E., and Allen, M. R.: 1996, ‘Human Influence on the Atmospheric Vertical Temperature Structure: Detection and Observations’, Science 274, 1170–1173.Google Scholar
  46. Tett, S. F. B., Johns, T. C., and Mitchell, J. F. B.: 1997, ‘Global and Regional Variability in a Coupled AOGCM’, Clim. Dyn. 13, 303–323.Google Scholar
  47. Titus, J. G. and Narayanan, V.: 1996, ‘The Risk of Sea Level Rise’, Clim. Change 33, 151–212.Google Scholar
  48. Tol, R. S. J. and de Vos, A. F.: 1998, ‘A Bayesian Statistical Analysis of the Enhanced Greenhouse Effect’, Clim. Change 38, 87–112.Google Scholar
  49. Voss, R. and Mikolajewicz, U.: 2001, ‘Long-Term Climate Changes Due to Increased CO2 Concentration in the Coupled Atmosphere-Ocean General Circulation Model ECHAM3/LSG’, Clim. Dyn. 17, 45–60.Google Scholar
  50. UKMO/DETR: 2000, Climate Change: An Update of Recent Research from the Hadley Centre, Hadley Centre.Google Scholar
  51. Wigley, T.M. L., Raper, S. C. B., Smith, S., and Hulme, M.: 2000, The MAGICC/SCENGEN Climate Scenario Generator: Version 2.4: Technical Manual, CRU, UEA, Norwich, U.K.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Timothy D. Mitchell
    • 1
  1. 1.Tyndall Centre for Climate Change Research, School of Environmental SciencesUniversity of East AngliaNorwichU.K.

Personalised recommendations