Journal of Paleolimnology

, Volume 30, Issue 3, pp 297–306 | Cite as

Natural environmental changes and human impact reflected in sediments of a high alpine lake in Switzerland

  • C. Ohlendorf
  • M. Sturm
  • S. Hausmann
Article

Abstract

From the high alpine Sägistalsee (1935 m a.s.l.), 13.50 m of continuously laminated sediments comprising the last 9050 years, were analyzed. Even though Sägistalsee is a high elevation site, human-induced environmental changes start as early as 4300 cal. BP and leave a clearly detectable signal in the mineralogy of the sediments, which is much stronger than the signal from natural environmental changes that occurred before this time. Variations in the physical and mineralogical sediment properties of this clastic sequence reflect erosional changes in the catchment, where almost pure limestone contrasts with carbonaceous, quartz-bearing marl, and shist. The calcite/quartz (Cc/Qz) ratio was found to be most indicative of these changes, which occurred around AD 1850 and at 650, 2000, 3700, and 6400 cal. BP. The first four are interpreted as erosion events, which are related to human-induced changes in the vegetation cover and land use. We associate them to the recent development of tourism and grazing, the medieval intensification of pasturing, Roman forest clearance, and Bronze Age forest clearance, respectively. The Cc/Qz-ratio increases significantly within less than 100 years during these events, reflecting the erosion of unweathered or poorly weathered soils. The time intervals in between are characterized by a gradually decreasing Cc/Qz-ratio and reflect the stabilization or formation of new soils. Only the change at 6400 cal. BP, which represents the initial gradual stabilization of the catchment, is related to the immigration of Picea abies.

Erosion Weathering Sedimentology Mineralogy Grain Size Human impact 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beniston M., Diaz H.F. and Bradley R.S. 1997. Climatic change at high elevation sites: an overview. Clim. Change 36: 233–251.Google Scholar
  2. Conley D.J. 1988. Biogenic silica as an estimate of siliceous microfossil abundance in Great Lakes sediments. Biochem. 6: 161–179.Google Scholar
  3. Dearing J.A. 1991. Lake sediment records of erosional processes. Hydrobiologia 214: 99–106.Google Scholar
  4. DeMaster D.J. 1981. The supply and accumulation of silica in the marine environment. Geoch. Cosmoch. Acta. 45: 1715–1732.Google Scholar
  5. Fanning D.S., Keramidas V.Z. and El-Desoky M. 1989. Micas. In: Dixon J.B. and Weed S.B. (eds), Minerals in Soil Environments. Soil Science Society of America, Madison, Wisconsin, pp. 551–634.Google Scholar
  6. Garrels R.M. and MacKenzie F.T. 1967. Origin of the chemical composition of some springs and lakes. In: Gould R.F. (ed.), Equilibrium Concepts in Natural Water Systems. American Chemical Society, Washington D.C.. Adv. Chem. Ser. 67, pp. 222–242.Google Scholar
  7. Gobet E., Hochuli, P.A. and Ariztegui D. 2001. Human Impact on the Vegetation of the Upper Engadine (Central Swiss Alps). EUG XI, J. Conf. Abs. 6: 128.Google Scholar
  8. Günzler-Seiffert H. and Wyss R. 1938. Erläuterungen zur geologische Karte von Grindelwald, Blatt 396, Geologischer Atlas der Schweiz 1:25000 13, Bern.Google Scholar
  9. Guthruf J., Guthruf-Seiler K. and Zeh M. 1999. Kleinseen im Kanton Bern. Gewässer und Bodenschutzlabor, Amt für Gewässerschutz und Abfallwirtschaft des Kantons Bern, 229 pp.Google Scholar
  10. Heiri O. and Lotter A.F. 2003. 9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna. J. Paleolim. 30: 273–289.Google Scholar
  11. Hirt A.M., Lanci L. and Koinig K. 2003. Mineral magnetic record of Holocene environmental changes in Sägistalsee, Switzerland. J. Paleolim. 30: 321–331.Google Scholar
  12. Hofmann W. 2003. The long-term succession of high-altitude cladoceran assemblages: a 9000 year record from Sägistalsee (Swiss Alps). J. Paleolim. 30: 291–296.Google Scholar
  13. Koinig K., Shotyk W., Lotter A.F., Ohlendorf C. and Sturm M. 2003. 9000 years of geochemical evolution of lithogenic major and trace elements in the sediments of an alpine lake — the role of climate, vegetation, and land use history. J. Paleolim. 30: 307–320.Google Scholar
  14. Leemann A. and Niessen F. 1994. Holocene glacial activity and climatic variations in the Swiss Alps: reconstructing a continuous record from proglacial lake sediments. The Holocene 4: 259–268.Google Scholar
  15. Leonard E.M. and Reasoner M.A. 1999. A continuous Holocene Glacial Record Inferred from Proglacial Lake Sediments in Banff National Park, Alberta, Canada. Quat. Res. 51: 1–13.Google Scholar
  16. Leonard E.M. 1986. Varve studies in Hector Lake, Alberta, Canada, and the relationship between glacial activity and sedimentation. Quat. Res. 25: 199–214.Google Scholar
  17. Lotter A., Ammann B., Birks H.J.B., Heiri O., Hirt A., Lanci L., Lemcke G., Sturm M., van Leeuwen J.F.N., Walker I.R. and Wick L. 1997. AQUAREAL: A multi-proxy study of Holocene sediment archives in Alpine lakes. Würzburger Geogr. Manuskripte 41: 127–128.Google Scholar
  18. Lotter A.F. and Birks H.J.B. 2003. Holocene sediments of Sägistalsee, a small lake at present-day tree-line in the Swiss Alps. J. Paleolim. 30: 253–260.Google Scholar
  19. Ohlendorf C., Niessen F. and Weissert H. 1997. Glacial Varve Thickness and 127 Years of Instrumental Climate Data: A Comparison. Clim. Change 36: 391–411.Google Scholar
  20. Ohlendorf C., Bigler C., Goudsmit G.H., Lemcke G., Livingstone D.M., Lotter A.F., Müller B. and Sturm M. 2000. Causes and effects of long ice cover on a remote high Alpine lake. J. Limnol. 59: 65–80.Google Scholar
  21. Seeber H. 1911. Geologische Kartenskizze desGebietes östlich vom Lauterbrunnental 1:50000. Geogr. artist. Anstalt Kümmerly &; Frey, Bern.Google Scholar
  22. St. Arnaud R.J. and Sudom M.D. 1981. Mineral Distribution and Weathering in Chernozemic and Luvisolic Soil from Central Saskatchewan. Can. J. Soil Sci. 61: 79–89.Google Scholar
  23. Sturm M. and Matter A. 1978. Turbidites and varves in Lake Brienz (Switzerland): deposition of clastic detritus by density currents. Spec. Pub. Int. Ass. Sed. 2: 147–168.Google Scholar
  24. Sturm M. 1979. Origin and composition of clastic varves. In: Schlüchter Ch. (ed.), Moraines and Varves. A.A. Balkema, Rotterdam, pp. 281–285.Google Scholar
  25. Tinner W. and Ammann B. 1996. Treeline fluctuations recorded for 12,500 years by soil profiles, and plant macrofossils in the central Swiss Alps. Arct. Alp. Res. 28: 131–147.Google Scholar
  26. Wick L., van der Knaap W.O., Leeuwen J.F.N. and Lotter A.F. 2003. Holocene vegetation development in the catchment of Sägistalsee (1935 m a.s.l.), a small lake in the Swiss Alps. J. Paleolim. 30: 261–272.Google Scholar
  27. Wick L. and Tinner W. 1997. Vegetation changes and timberline fluctuations in the Central Alps as indicators of Holocene climatic Oscillations. Arct. Alp. Res. 29: 445–458.Google Scholar
  28. Wyss R. 1990. Die frühe Besiedlung der Alpen aus archäologischer Sicht. Mit 17 Abbildungen. Siedlungsforschung Archäologie-Geschichte-Geographie 8: 69–86.Google Scholar
  29. Zar J. 1984. Biostatistical Analysis. Prentice-Hall, New Jersey, 718 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • C. Ohlendorf
    • 1
    • 2
  • M. Sturm
    • 1
  • S. Hausmann
    • 3
  1. 1.Swiss Federal Institute of Environmental Science and Technology (EAWAG), Überlandstrasse 133DübendorfSwitzerland and
  2. 2.Geomorphology and Polar Research (GEOPOLAR), Institute of Geography, FB 8University of Bremen, Celsiusstrasse FVG-MBremenGermany
  3. 3.Institute of Plant SciencesUniversity of Bern, Altenbergrain 21BernSwitzerland

Personalised recommendations