Biogeochemistry

, Volume 65, Issue 1, pp 121–150 | Cite as

A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment

  • Darrell A. Herbert
  • Mathew Williams
  • Edward B. Rastetter
Article

Abstract

Productivity and carbon (C) storage in many mature tropical forests are considered phosphorus (P) limited because of advanced soil weathering. However, disturbance can shift limitation away from P and toward nitrogen (N) because of disproportionately large N losses associated with its mobility relative to P in ecosystems. This shift was illustrated by model analyses in which large disturbances including timber extraction and slash-burn were simulated in a P-limited tropical forest. Re-accumulation of ecosystem C during secondary forest growth was initially N-limited, but long term limitation reverted to P. Mechanisms controlling shifts between N and P limitation included: (1) N volatility during slash combustion produced ash that increased soil solution P more than N, (2) a wide N:P ratio in residual fuel and belowground necromass relative to soil organic matter (SOM) N:P produced a simultaneous P sink and N source during decomposition, (3) a supplemental (to aerosol deposition) external N source via biological N fixation. Redistribution of N and P from low C:nutrient SOM to high C:nutrient vegetation was the most important factor contributing to the resilience of ecosystem C accumulation during secondary growth. Resilience was diminished when multiple harvest and re-growth cycles depleted SOM. Phosphorus losses in particular resulted in long-term reductions of C storage capacity because of slow re-supply rates via deposition and the absence of other external sources. Sensitivity analyses limiting the depth of microbially active SOM in soil profiles further illustrated the importance of elements stored in SOM to ecosystem resilience, pointing to a need for better knowledge on the functioning of deeply buried SOM.

Carbon Ecosystem model Land-use Nitrogen Phosphorus Soil organic matter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker D.J.et al.1993.National Acid Precipitation Assessment Program 1992 Report to Congress.Google Scholar
  2. Bell C.W.and Bidulph O.1963.Translocation of calcium.Exchange versus mass ow.Plant Physiol.38:610–614.Google Scholar
  3. Bernier B.and Brazeau M.1980.Foliar nutrient status in relation to sugar maple decline in the Quebec Appalachians.Can.J.Forest Res.18:754–761.Google Scholar
  4. Bondietti E.A., Momoshima N., Shortle W.C.and Smith K.T.1990.A historical perspective on divalent cation trends in red spruce stemwood and the hypothetical relationship to acidic de-position.Can.J.Forest Res.20:1850–1858.Google Scholar
  5. Coote D.R., Siminovitch D., Singh S.S.and Wang C.1981.Contribution 119, Land Resources Institute.Agriculture Canada Publishers Ottawa, pp.1–25.Google Scholar
  6. Clarkson D.T.1969.Ecological aspects of aluminum toxicity and some possible mechanisms of resistance.In:Rorison I.H.(ed)Ecological Aspects of Mineral Nutrition of Plants.Blackwell Scienti c Publishers, Boston, pp.381–397.Google Scholar
  7. Driscoll C.T., Lawerence C.B., Bulger A.J., Butler T.J., Cronan C.S., Eagar C., Lambert K.F., Likens G.E., Stoddard J.L.and Weathers K.C.2001.Acidic deposition in the northeastern United States:sources and inputs, ecosystems e ects, and management strategies.Bioscience 51:180–198.Google Scholar
  8. Enders H.-P.and Evers F.H.1997 In:Hüttl R.F.and Schaaf W.(eds)Magnesium Defficiency in Forest Ecosystems.Kluwer Academic Publishers, Boston, pp.4–5.Google Scholar
  9. Fan S., Gloor M., Mahlman J., Pacala S., Sarmiento J., Takahashi T.and Tans P.1998.A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models.Science 282:442–446.Google Scholar
  10. Fang J., Chen A., Changhui P., Shuqing Z.and Longjun C.2001.Change in forest biomass carbon storage in China between1949 and 1998.Science 292:2320–2322.Google Scholar
  11. Freidland A.J.and Miller E.K.1999.Major-element cycling in a high-elevation Adirondack forest: patterns and changes, 1986–1996.Eco.Appl.9 (3):938–967.Google Scholar
  12. Guttenberg A.V.1896.Die Aufstellung von Holzmassen-und Geldertragstafeln von Stammana-lysen.Österr.Vierteljahresschr.Forstwes.Wien36:203–237;319–345.Google Scholar
  13. Hendershot W.H.1991.Fertilization of sugar maple showing dieback symptoms in the Quebec Appalachains, Canada.Fert.Res.27:63–70.Google Scholar
  14. Hornbeck J.W.and Smith R.B.1985.Documentation of red spruce growth decline.Can.J.Forest Res.15:1199–1201.Google Scholar
  15. Hutchinson T.C.and Whitby L.M.1977.The e ects of heavy rainfall and heavy particulates on a boreal forest ecosystemnear the Sudbury smelting region of Canada.Water Air Soil Poll.7:421–438.Google Scholar
  16. Houghton R.A., Hackler J.L.and Lawrence K.T.1999.The U.S.carbon budget:contributions from land-use change.Science 285:574–578.Google Scholar
  17. Hüttl R.F.1985.In:Neuartige Waldscha ¨denund Na ¨hrelementversorgung von Fichtenbesta ¨nden (Picea abies. Karst.)inSüdwestendeutschland.Thesis, Freiburger Bodenkundliche Abhan-dlungen, Vol.16.Freiburg, Germany (See also Tomlinson and Tomlinson 1990.CRC Press Publishers, Boca Raton, FL, USA, pp.34–39;139–165)Google Scholar
  18. Jenny H.1980.The Soil Resource.Springer-Verlag Publishers, New York, p.87.Google Scholar
  19. Johnson A.H.1987.Deterioration of red spruce in the northern Appalachian Mountains.In: Hutchinson T.C.and Meema K.(eds)E ects of Atmospheric Pollution on Forests, Wetlands and Agricultural Ecosystems.Springer Verlag Publishers, New York, p.85.Google Scholar
  20. Johnson N.M., Driscol C.T., Eaton J.S., Likens G.E.and McDowell W.H.1981.Acid rain, dis-solved aluminum and chemical weathering at the Hubbard Brook Experimental Forest, New Hampshire.Geochim.Cosmochim.Ac.45 (9):1421–1437.Google Scholar
  21. Jorns A.and Hecht-Buchholz C.1985.Aluminiuminduzierter magnesium-und-calcium mangel in laborversuch bei Fichtensa ¨mlingen.Allg.Forstz.40 (46):1248–1252.Google Scholar
  22. Kirby E.A.and Pilbeam R.J.1984.Calcium as a plant cell nutrient.Plant Cell Environ.7:7–405.Google Scholar
  23. Ledin S.and Wiklander L.1974.Exchange acidity of wheat and pea roots in salt solution.Plant Soil 41:403–413.Google Scholar
  24. Likens G.E.and Bormann F.H.1995.Biogeochemistry of a Forested Ecosystem, 2nd ed.Springer-Verlag, New York.Google Scholar
  25. Likens G.E., Driscol C.T.and Buso D.C.1996.Long term e ects of acid rain:response and recovery of a forest ecosystem.Science 272:244–2246.Google Scholar
  26. Likens G.E., Driscol C.T., Buso D.C., Siccama T.G., Johnson C.E., Lovett G.M., Fahey T.J., Reiners W.A., Ryan D.F., Martin C.W.and Bailey S.W.1998.The biogeochemistry of calcium at Hubbard Brook.Biogeochemistry 41:89–173.Google Scholar
  27. Lovett G.M., Reiners W.A.and Olson R.K.1982.Cloud droplet deposition in subalpine balsam r forests:hydrological and chemical inputs.Science 218:303–1304.Google Scholar
  28. Miller E.K.and Friedland A.J.1999.Local climate in uences on precipitation, cloud water, and dry deposition to an Adirondack subalpine forest:Insights from observations 1986–1996.J. Environ.Qual.28 (1):270–277Google Scholar
  29. Ouimet R.and Fortin J.M.1991.Growth and foliar nutrient status of sugar maple:incidence of forest decline and reaction to fertilization.Can.J.Forest Res.22:699–706.Google Scholar
  30. Pacala S.W.et al 2001.Consistent land-and atmosphere-based carbon sink estimates.Science 292: 2316–2320.Google Scholar
  31. Painter T.J.and Purves C.B.1960.Polysaccharides in the inner bark of white spruce.TAPPI 43: 729–736.Google Scholar
  32. Russell R.S.1977.Plant Root Systems:Their Function and Interaction in the Soil.Mcgraw-Hill Publishers, London.Google Scholar
  33. Sharpe W.E.and Drohan J.R.1999.The E ects of Acidic Deposition on Pennsylvania 's Forests. Environmental Resources Research Institute Publishers, University Park, PA 16802, USA.Google Scholar
  34. Shear C.B.and Faust M.1970.Calcium transport in apple trees.Plant Physiol.45:670–674.Google Scholar
  35. Simson B.W.and Timell T.E.1978.Polysaccharides incambial tissue of Populus tremuloides and Tilia americana. 1.Isolation, fractionation and chemical composition of the cambial tissue.Cell. Chem.Technol.12:39–50.Google Scholar
  36. Sparks D.L.1986.Soil Physical Chemistry.CRC Press Publisher, Boca Raton, FL, USA, pp. 56–63.Google Scholar
  37. Spiecker H.1996.Growth Trends inEuropeanForests.EuropeanForest Institute Research Report No.5.Springer-Verlag Publishers, Berlin.Google Scholar
  38. Sterba H.1996.Forest decline and growth trends in Central Europe-a review.In:Spiecker et al. (eds)Growth Trends inEuropeanForests.EuropeanForest Institute Research Report No 5. Springer-Verlag Publishers, Berlin, pp.189–199.Google Scholar
  39. Timell T.E.1965.Wood and bark polysaccharides.In:Cote ´W.A.(ed)Cellular Ultrastructure of Woody Plants.Syracuse University Press Publishers, Syracuse, NY, pp.127–156.Google Scholar
  40. Tomlinson G.H.1987.Acid deposition, nutrient imbalance and tree decline:a commentary.In: Hutchinson T.C.and Meema K.M.(eds)E ects of Atmospheric Pollution on Forests, Wetlands and Agricultural Ecosystems.Springer-Verlag Publishers, New York, pp.189–199.Google Scholar
  41. Tomlinson G.H.1990 In:Tomlinson G.H.and Tomlinson F.L.(eds)E ects of Acid Deposition on the Forests of Europe and North America.CRC Press Publishers, Boca Raton, FL USA, p.33 and pp.133–135.Google Scholar
  42. Tyler G., Berggren D., Bergkvist B., Falkengren-Grerup U., Folkeson L.and Ruhling A. 1987 In: Hutchinson T.C.and Meema K.M.(eds)E ects of Atmospheric Pollution on Forests, Wetlands and Agricultural Ecosystems.Springer-Verlag Publishers, New York, pp.347–359.Google Scholar
  43. Ulrich B.1986.Natural and anthropogenic components of soil acidi cation.Z.P anz. Bodenkunde 149:702–717.Google Scholar
  44. Ulrich B.and Matzner E.1986.Anthropogenic and natural acidi cation in terrestrial ecosystems. Experentia 42:344–350.Google Scholar
  45. Vogelmann H.W., Perkins T.D., Badger G.J.and Klein R.W.1988.A 21 year record of forest decline on Camel 's Hump.Vermont, USA.Eur.J.Forest Pathol.18:240–249.Google Scholar
  46. Wofsy S.C.2001.Where has all the carbon gone?Science 292:2261–2263.Google Scholar
  47. Wood T., Bormann F.H.and Voight G.K.1984.Phosphorus cycling in a northern hardwood forest:biological and chemical control.Science 227:391–393.Google Scholar
  48. Zöttl H.W.and Hüttl R.F.1986.Nutrient supply and forest decline in southwest Germany.Water Air Soil Poll.31:255–256.Google Scholar
  49. Zöttl H.W., Hüttl R.F., Fink S., Tomlinson G.H.and Wisniewski J.1989.Nutritional disturbances and histological changes in declining forests.Water Air Soil Poll.48:87–109.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Darrell A. Herbert
  • Mathew Williams
  • Edward B. Rastetter

There are no affiliations available

Personalised recommendations