Oxidation of Metals

, Volume 60, Issue 3–4, pp 271–291 | Cite as

Comparison of the Oxidation Rates of Some New Copper Alloys

  • L. Ogbuji
  • D.L. Humphrey
Article

Abstract

Copper alloys were studied for oxidation resistance and mechanisms between 550 and 700°C, in reduced-oxygen environments expected in rocket engines, and their oxidation behaviors compared to that of pure copper. They included two dispersion-strengthened alloys (precipitation-strengthened and oxide-dispersion strengthened, respectively) and one solution-strengthened alloy. In all cases the main reaction was oxidation of Cu into Cu2O and CuO. The dispersion-strengthened alloys were superior to both Cu and the solution-strengthened alloy in oxidation resistance. However, factors retarding oxidation rates seemed to be different for the two dispersion-strengthened alloys.

Copper alloys oxidation low-oxygen environments kinetics mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. B. Morgan et al., Advanced Earth-to-Orbit Propulsion Technology 1988, Vol. II, J. Richmond and S. Wu, eds., NASA Conf. Publication 3012(1988).Google Scholar
  2. 2.
    M. Murphy, et al., Advanced Earth-to-Orbit Propulsion Technology 1986, Vol. II, R. J. Richmond and S. Wu, eds., NASA Conf. Publication 2437 (1986) p. 580.Google Scholar
  3. 3.
    D. L. Ellis and D. J. Keller, NASA Contract Report CR 2000–210055, NASA GRC, Cleveland, OH, June 2000.Google Scholar
  4. 4.
    L. U. J. T. Ogbuji, to appear in Materials at High Temperatures.Google Scholar
  5. 5.
    D. E. Davies and U. R. Evans, “The Oxidation of Iron at 175 to 3508C”, Proc. Roy. Soc. Lond. 225A, 443(1954).Google Scholar
  6. 6.
    L. U. J. T. Ogbuji, J. Electrochem. Soc. 145(8), 2876(1998).Google Scholar
  7. 7.
    L. U. J. T. Ogbuji, J. Electrochem. Soc. 145(8), 2876(1998).Google Scholar
  8. 8.
    K. G. Nickel, Corrosion of Advanced Ceramics: Measurement and Modeling, K. G. Nickel, ed. (Kluwer Publishers, Boston, USA, 1994) p. 59.Google Scholar
  9. 9.
    A. Ronnquist and H. Fischmeister, J. Inst. of Metals, 89, 65(1960–61).Google Scholar
  10. 10.
    S. Mrowec and A. Stoklosa, Oxid. Met. 3(3), 290(1971).Google Scholar
  11. 11.
    J.-H. Park and K. Natesan, Oxid Met. 39(5/6), 411(1993).Google Scholar
  12. 12.
    M. P. Brady, P. F. Tortorelli, and L. R. Walker, Mat. High Temp. 17(2), 235(2000).Google Scholar
  13. 13.
    I. G. Wright, V. Nagarajan, and J. Stringer, Corrosion Sci. 35(5–8) 841(1993).Google Scholar
  14. 14.
    J. R. Groza, Mat. Charac. 31, 133(1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • L. Ogbuji
    • 1
  • D.L. Humphrey
    • 1
  1. 1.QSS Group, NASA Glenn Research CenterCleveland

Personalised recommendations