Photosynthesis Research

, 78:67 | Cite as

Photosynthetic and respiratory electron transport in the alkaliphilic cyanobacterium Arthrospira (Spirulina) platensis

  • S. Berry
  • Y.V. Bolychevtseva
  • M. Rögner
  • N.V. Karapetyan
Article

Abstract

Photosynthetic and respiratory electron transport and their interplay with ion transport have been studied in Arthrospira platensis, a filamentous alkaliphilic cyanobacterium living in hypersaline lakes. As typical for alkaliphiles, A. platensis apparently does not maintain an outward positive pH gradient at its plasma membrane. Accordingly, sodium extrusion occurs via an ATP-dependent primary sodium pump, in contrast to the Na+/H+ antiport in most cyanobacteria. A. platensis is strongly dependent on sodium/bicarbonate symport for the uptake of inorganic carbon. Sodium extrusion in the presence of the Photosystem II inhibitor diuron indicates that a significant amount of ATP is supplied by cyclic electron transport around Photosystem I, the content of which in A. platensis is exceptionally high. Plastoquinol is oxidized by two parallel pathways, via the cytochrome b6f complex and a putative cytochrome bd complex, both of which are active in the light and in the dark.

fluorescence proton translocation sodium 

References

  1. Albers SV, Van de Vossenberg JL, Driessen AJ and Konings WN (2001) Bioenergetics and solute uptake under extreme conditions. Extremophiles 5: 285-294PubMedGoogle Scholar
  2. Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M and Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of Photosystems I and II in Synechococcus sp. Plant Physiol 123: 1047-1056PubMedCrossRefGoogle Scholar
  3. Bakker EP and Harold FM (1980) Energy coupling to potassium transport in Streptococcus faecalis. Interplay of ATP and the protonmotive force. J Biol Chem 255: 433-440PubMedGoogle Scholar
  4. Barsky EL, Gusev MV, Nikitina KA and Samuilov VD (1981) Light-induced proton translocation through thylakoid and cytoplasmic membranes of Plectonema boryanum. Arch Microbiol 129: 105-108Google Scholar
  5. Berry S, Schneider D, Vermaas WFJ and Rögner M (2002) Electron transport routes in whole cells of Synechocystis sp. strain PCC 6803: The role of the cytochrome bd-type oxidase. Biochemistry 41: 3422-3429PubMedCrossRefGoogle Scholar
  6. Berry S, Esper B, Karandashova I, Teuber M, Elanskaya I, Rögner M and Hagemann M (2003) Potassium uptake in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 mainly depends on a Ktr-like system encoded by slr1509 (ntpJ). FEBS Lett 548: 53-58.PubMedCrossRefGoogle Scholar
  7. Bojko M and Wieckowski S (1995) Diaphorase activity of ferredoxin: NADP oxidoreductase in the presence of dibromothymoquinone. Phytochemistry 40: 661-665CrossRefGoogle Scholar
  8. Büchel C, Zsíros O and Garab G (1998) Alternative cyanidesensitive oxidase interacting with photosynthesis in Synechocystis PCC6803. Ancestor of the terminal oxidase of chlororespiration? Photosynthetica 35: 223-231CrossRefGoogle Scholar
  9. Buck D and Smith G (1995) Evidence for a Na+/H+ electrogenic antiporter in an alkaliphilic cyanobacterium Synechocystis. FEMS Microbiol Lett 128: 315-320Google Scholar
  10. Elanskaya IV, Karandashova IV, Bogachev AV and Hagemann M (2002) Functional analysis of the Na+/H+ antiporter encoding genes of the cyanobacterium Synechocystis PCC 6803. Biochemistry (Moscow) 67: 432-440CrossRefGoogle Scholar
  11. Endo T, Shikanai T, Sato F and Asada K (1998) NAD(P)H dehydrogenase-dependent, antimycin A-sensitive electron donation to plastoquinone in tobacco chloroplasts. Plant Cell Physiol 39: 1226-1231Google Scholar
  12. Howitt CA, Udall PK and Vermaas WFJ (1999) Type 2 NADH dehydrogenases in the cyanobacterium Synechcocystis sp. Strain PCC 6803 are involved in regulation rather than respiration. J Bacteriol 181: 3994-4003PubMedGoogle Scholar
  13. Inaba M, Sakamoto A and Murata N (2001) Functional expression in Escherichia coli of low-affinity and high-affinity Na+ (Li+)/H+ antiporters of Synechocystis. J Bacteriol 183: 1376- 1384PubMedCrossRefGoogle Scholar
  14. Kaplan A and Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50: 539-570PubMedCrossRefGoogle Scholar
  15. Karapetyan NV, Dorra D, Schweitzer G, Bezsmertnaya IN and Holzwarth AR (1997) Fluorescence spectroscopy of the longwave chlorophylls in trimeric and monomeric Photosystem I core complexes from the cyanobacterium Spirulina platensis. Biochemistry 36: 13830-13837PubMedCrossRefGoogle Scholar
  16. Karapetyan NV, Holzwarth AR and Rögner M (1999) The Photosystem I trimer of cyanobacteria: Molecular organization, excitation dynamics and physiological significance. FEBS Lett 460: 395-400PubMedCrossRefGoogle Scholar
  17. Kruip J, Bald D, Boekema E and Rögner M (1994) Evidence for the existence of trimeric and monomeric Photosystem I complexes in thylakoid membranes from cyanobacteria. Photosynth Res 40: 279-286CrossRefGoogle Scholar
  18. Kruip J, Karapetyan NV, Terekhova IV and Rögner M (1999) In vitro oligomerization of a membrane protein complex. Liposome-based reconstitution of trimeric Photosystem I from isolated monomers. J Biol Chem 274: 18181-18188PubMedCrossRefGoogle Scholar
  19. Li Q and Canvin DT (1998) Energy sources for HCO3-and CO2 transport in air-grown cells of Synechococcus UTEX 625. Plant Physiol 116: 1125-1132PubMedCrossRefGoogle Scholar
  20. Lu C and Zhang J (2000) Role of light in the response of PS II photochemistry to salt stress in the cyanobacterium Spirulina platensis. J Exp Bot 51: 911-917PubMedCrossRefGoogle Scholar
  21. Lu CM, Torzillo G and Vonshak A (1999) Kinetic response of Photosystem II photochemistry in the cyanobacterium Spirulina platensis to high salinity is characterized by two distinct phases. Aust J Plant Physiol 26: 283-292CrossRefGoogle Scholar
  22. Matthijs HCP, van Steenbergen JM and Kraayenhof R (1985) Studies on 9-amino-6-chloro-2-methoxy acridine fluorescence quenching and enhancement in relation to energy transduction in spheroplasts and intact cells of the cyanobacterium Plectonema boryanum. Photosynth Res 7: 59-67CrossRefGoogle Scholar
  23. Mohanty P, Srivastava M and Krishna KB (1997) The photosynthetic apparatus of Spirulina: electron transport and energy transfer. In: Vonshak A (ed) Spirulina Platensis (Arthrospira), pp 17-42, Taylor & Francis, LondonGoogle Scholar
  24. Papageorgiou GC (1996) The photosynthesis of cyanobacteria (blue bacteria) from the perspective of signal analysis of chlorophyll a fluorescence. J Sci Industr Res 55: 596-617Google Scholar
  25. Peschek GA (1999) Photosynthesis and respiration of cyanobacteria: Bioenergetic significance and molecular interactions. In: Peschek GA, Löffelhardt W and Schmetterer G (eds) The Phototrophic Prokaryotes, pp 201-209. Kluwer Academic Publishers/ Plenum Publishers, New YorkGoogle Scholar
  26. Peschek GA, Nitschmann WH and Czerny T (1988) Respiratory proton extrusion and plasma membrane energization. Meth Enzymol 167: 361-379CrossRefGoogle Scholar
  27. Pils D and Schmetterer G (2001) Characterization of three bioenergetically active respiratory terminal oxidases in the cyanobacterium Synechocystis sp. strain PCC 6803. FEMS Microbiol Lett 203: 217-222PubMedCrossRefGoogle Scholar
  28. Pils D, Gregor W and Schmetterer G (1997) Evidence for in vivo activity of three distinct respiratory terminal oxidases in the cyanobacterium Synechocystis sp. strain PCC6803. FEMS Microbiol Lett 152: 83-88CrossRefGoogle Scholar
  29. Rakhimberdieva MG, Boichenko VA, Karapetyan NV and Stadnichuk IN (2001) Interaction of phycobilisomes with Photosystem II dimers and Photosystem I monomers and trimers in the cyanobacterium Spirulina platensis. Biochemistry 40: 15780- 15788PubMedCrossRefGoogle Scholar
  30. Schlesinger P, Belkin S and Boussiba S (1996) Sodium deprivation under alkaline conditions causes rapid death of the filamentous cyanobacterium Spirulina platensis. J Phycol 32: 608-613CrossRefGoogle Scholar
  31. Schlösser UG (1994) SAG - Sammlung von Algenkulturen at the University of Göttingen. Catalogue of strains. Bot Acta 107: 113-186Google Scholar
  32. Schmetterer G (1994) Cyanobacterial respiration. In: Bryant DG (ed) The Molecular Biology of Cyanobacteria, pp 409-435.Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  33. Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, Kaplan A and Ogawa T (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: Function and phylogenetic analysis. J Biol Chem 277: 18658-18664PubMedCrossRefGoogle Scholar
  34. Shubin VV, Tsuprun VL, Bezsmertnaya IN and Karapetyan NV (1993) Trimeric forms of the Photosystem I reaction center complex pre-exist in the membranes of the cyanobacterium Spirulina platensis. FEBS Lett 334: 79-82PubMedCrossRefGoogle Scholar
  35. Skulachev VP (1994) Chemiosmotic concept of the membrane bioenergetics: What is already clear and what is still waiting for elucidation? J Bioenerg Biomembr 26: 589-598PubMedCrossRefGoogle Scholar
  36. Teuber M, Rögner M and Berry S (2001) Fluorescent probes for non-invasive bioenergetic studies of whole cyanobacterial cells. Biochim Biophys Acta 1506: 31-46PubMedCrossRefGoogle Scholar
  37. Verma K and Mohanty P (2000) Changes of the photosynthetic apparatus in Spirulina cyanobacterium by sodium stress. Z Naturforsch [C] 55: 16-22Google Scholar
  38. Vonshak A (1997) Spirulina: Growth, physiology and biochemistry. In: Vonshak A (ed) Spirulina platensis (Arthrospira), pp 43-65. Taylor & Francis, LondonGoogle Scholar
  39. Waditee R, Hibino T, Nakamura T, Incharoensakdi A and Takabe T (2002) Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proc Natl Acad Sci USA 99: 4109-4114PubMedCrossRefGoogle Scholar
  40. Xu CH, Nejidat A, Belkin S and Boussiba S (1994) Isolation and characterization of the plasma membrane by two-phase partitioning from the alkalophilic cyanobacterium Spirulina platensis. Plant Cell Physiol 35: 737-741Google Scholar
  41. Zeng MT and Vonshak A (1998) Adaptation of Spirulina platensis to salinity-stress. Comp Biochem Physiol A 120/121: 113-118CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S. Berry
    • 1
  • Y.V. Bolychevtseva
    • 2
  • M. Rögner
    • 1
  • N.V. Karapetyan
    • 2
  1. 1.Faculty of BiologyRuhr University – BochumBochumGermany
  2. 2.A.N. Bakh Institute of Biochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations