Journal of Applied Phycology

, Volume 15, Issue 5, pp 433–438 | Cite as

Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii

  • Adelina de la Jara
  • Héctor Mendoza
  • Antera Martel
  • Cristina Molina
  • Laurette Nordströn
  • Vladimir de la Rosa
  • Ricardo Díaz
Article

Abstract

Since flow cytometry allows rapid,simultaneous and quantitative measurementsrelated to cell morphology andphysiologicy, the lipid-specificfluorescent dye, Nile Red, was employed forthe in vivo lipid quantification of Crypthecodinium cohnii, a heterotrophicmarine dinoflagellate rich inpolyunsaturated long chain fatty acids. Thefluorescence signal was linearly correlatedwith the neutral and polar lipid content asdetermined by gravimetric techniques. Asignificant correlation of NR signal wasalso observed between the polar to neutrallipid ratio and docohexaenoic acid percell. The results demonstrate a method forrapid lipid quantification that can be usedin the selection, isolation and culturecontrol of C. cohnii clones with highlipid and DHA content.

Crypthecodinium cohnii DHA flow cytometry lipid content neutral lipids nile red polar lipids PUFA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts B, Bray D, Lewis J, Ralf M, Roberts K, Watson JD (1989) Molecular Biology of the Cell. 2nd edn. Omega, Barcelona.Google Scholar
  2. Alonzo F, Mayzaud P (1999) Spectrofluorometric quantification of neutral and polar lipids in zooplankton using Nile Red. Marine Chem. 67: 289-301.Google Scholar
  3. Chelf P (1990) Environmental control of lipid and biomass production in two diatom species. J. appl. Phycol. 2: 121-129.Google Scholar
  4. Corzo A, Vergara JJ, García-Jiménez MC (1995) Isolation and flow cytometric characterisation of protoplasts from marine macroalgae. J. Phycol. 31: 1012-1018.Google Scholar
  5. Crow JF, Kimura M (1970) An Introduction to Population Genetics Theory. Harper and Row, New York: 591 pp.Google Scholar
  6. Dempster TA, Sommerfeld MR (1998) Effects of environmental conditions on growth and lipid accumulation in Nitzschia com-munis (Bacillariophyceae). J. Phycol. 34: 712-721.Google Scholar
  7. Folch S, Sloanes Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem. 226: 497-504.Google Scholar
  8. Fuller G, Nes WD (1987) Plant lipids and their interactions. In Fuller G, Nes WD (eds), Ecology and Metabolism of Plant Lipids. ACS Symposium Series 325. Washington, DC, pp. 2-8.Google Scholar
  9. Greenspan P, Fowler SD (1985) Spectrofluorometric studies of the lipid probe, Nile red. J. Lipids Res. 26: 781-789.Google Scholar
  10. Greenspan P, Mayer EP, Fowler SD (1985) Nile Red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100: 965-973.Google Scholar
  11. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In Smith WL, Chanle MH (eds), Culture of Marine Invertebrate Animals. Plenum Press, New York, pp. 26-60.Google Scholar
  12. Harrington GW, Holz GG (1968) The monoenoic and docohex-aenoic fatty acids of a heterotrophic dinoflagellate. Biochim. biophys. Acta 164: 137-139.Google Scholar
  13. Henderson RJ, Leftley JW, Sargent JR (1988) Lipid composition and biosynthesis in the marine dinoflagellate Crypthecodinium cohnii. Phytochemistry 27: 1679-1683.Google Scholar
  14. Lee SJ, Yoon B, Oh H (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol. Techn. 12: 553-556.Google Scholar
  15. Petkov GD, Klyachko-Gurvich GL, Furnadzhieva ST, Pronina NA, Ramazanov ZM (1990) Genotypic differences and phenotypic changes of lipid fatty acid composition in strains of Dunaliella salina. Soviet Planta Physiol. 3: 268-272.Google Scholar
  16. Roessler PG (1990) Environmental control of glycerolipid metabol-ism in microalgae: commercial implications and future research directions. J. Phycol. 26: 393-399.Google Scholar
  17. Salhi M, Izquierdo MS, Hernández-Cruz CM, Gonzalez M, Fernández-Palacios H (1994) Effect of lipid and n-3 HUFA levels in microdiets on growth, survival and fatty acid composition of larval gilthead seabream (Sparus aurata). Aquaculture 124: 275-282.Google Scholar
  18. Shapiro HM (1995) Practical Flow Cytometry. 3rd edn. Wiley-Liss, Inc, New York.Google Scholar
  19. Swaaf ME, Rijk TC, Eggink G, Sijtsma L (1999) Optimisation of docohexaenoic acid production in bath cultivation by Crypthecodinium cohnii. J. Biotechnol. 70: 185-192.Google Scholar
  20. Yongmanitcha W, Ward OP (1992) Separation of Lipid Classes from Phaeodactylum tricornutum Using Silica Cartridges. Phytochemistry 31(10): 3405-3408.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Adelina de la Jara
    • 1
    • 2
  • Héctor Mendoza
    • 2
  • Antera Martel
  • Cristina Molina
    • 1
  • Laurette Nordströn
    • 2
  • Vladimir de la Rosa
    • 2
  • Ricardo Díaz
    • 2
  1. 1.Centro de Algología AplicadaUniversidad de Las Palmas de Gran CanariaTeldeSpain
  2. 2.Departamento de BiotecnologíaInstituto Tecnológico de CanariasSta. LucíaSpain

Personalised recommendations