Advertisement

Chromosome Research

, Volume 11, Issue 7, pp 665–671 | Cite as

Molecular cytogenetic detection of paternal chromosome fragments in allogynogenetic gibel carp, Carassius auratus gibelio Bloch

  • M. S. Yi
  • Y. Q. Li
  • J. D. Liu
  • L. Zhou
  • Q. X. Yu
  • J. F. GuiEmail author
Article

Abstract

In gynogenesis, sperm from related species activates egg and embryonic development, but normally does not contribute genetically to the offspring. In gibel carp, Carassius auratus gibelio Bloch, however, gynogenetic offspring often show some phenotypes apparently derived from the heterologous sperm donor. This paternal effect of allogynogenesis is outstanding in an artificial clone F produced by cold treatment of clone E eggs after insemination with blunt-nose black bream (Megaloabrama amblycephala Yin) sperm. Karyotype analysis revealed 5–15 supernumerary microchromosomes in different individuals of clone F in addition to 156 normal chromosomes inherited from the maternal clone E. A painting probe was prepared from the microdissected microchromosomes, and used to investigate the origin of these microchromosomes. Strong positive signals were detected on each microchromosomes of clone F and on 4 pairs of chromosomes in blunt-nose black bream, whereas no signals were detected on the chromosomes of clone E. This result indicates that some paternal chromosome fragments of blunt-nose black bream have been incorporated into the artificial clone F. Therefore, the manipulation of allogynogenesis may provide a unique method to transfer DNA between diverse species for fish breeding.

allogynogenesis chromosome painting microchromosome microdissection paternal chromosome fragment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthony AE, Mosier DT (1982) Menidia clarkhbbsi (Pisces: Antherinidae), an all female species. Copeia 3: 533–540.Google Scholar
  2. Cherfas NB (1981) Gynogenesis in fishes, In: Kirpichnikov VS, ed. Genetic Bases of Fish Selection, Springer-Verlag, Berlin, pp 255–273.Google Scholar
  3. Climino MC (1972) Meiosis in triploid all-female fish (Poeciliopsis, Poeciliidae). Science 175: 1484–1486.Google Scholar
  4. Fan LC, Gui JF, Ding J, Zhu LF, Liang SC, Yang ZA (1997) Cytological mechanism on the integration of heterologous genome or chromosomes in the unique gynogenetic Carassius auratus gibelio. Devl Reprod Biol 6: 33–44.Google Scholar
  5. Fan LC, Lai YP, Zhu LF, Liang SC, Gui JF (2000) Comparative studies on mitochondrial DNAs of two different clones of Carassius auratus gibelio. Oceanol Limnol Sinica 31: 370–377.Google Scholar
  6. Fan Z, Shen J (1990) Studies on the evolution of bisexual reproduction in silver gibel carp (Carassius auratus gibelio Bloch). Aquaculture 84: 235–244.CrossRefGoogle Scholar
  7. Goddard KA, Megwinoff O, Wessner LL, Giaimo F (1998) Confirmation of gynogenesis in Phoxnus eos-neogaeus (Pisces: Cyprinidae). J Hered 89: 151–157.CrossRefGoogle Scholar
  8. Goldammer T, Weikard R, Brunner RM, Schwerin M (1996) Generation of chromosome fragment specific bovine DNA sequence by microdissection and DOP-PCR. Mammalian Genome 7: 291–296.PubMedCrossRefGoogle Scholar
  9. Gui JF (1996) A unique study system: gunogenetic fish Carassius auratus gibelio. Sci Found China 4: 44–46.Google Scholar
  10. Gui JF (1997) Retrospect and prospects of studies on the mechanism of natural gynogenesis in silver crucian carp (Carassius auratus gibelio). Bull Nat Sci Found China 11: 11–16.Google Scholar
  11. Gui JF, Liang SC, Sun JM (1990) Studies on genome manipulation in fish. I. Induction of triploid transparent colors inc crucian carp by hydrostatic pressure. Acta Hydrobiol Sinica 14: 336–344.Google Scholar
  12. Gui JF, Liang SC, Zhu LF, Jiang YG (1993) Discovery of two different reproductive development modes of the eggs of artificial multiple tetraploid allogynogenetic silver crucian carp. Chin Sci Bull 38: 332–337.Google Scholar
  13. Gui JF, Zhu LF, Wei XH et al. (1997) Genetic diversity and breeding implications of gynogenetic silver crucian carp. Hereditas (Beijing) 19: 37–38.Google Scholar
  14. Hubbs CL, Hubbs LC (1932) Apparent parthenogenesis in nature, in a form of fish of hybrid origin. Science 76: 628–630.Google Scholar
  15. Jiang YG, Yu HX, Chen BD, Liang SC (1983) Biological effect of heterologous sperm on gynogenetic offspring in Carassius auratus gibelio. Acta Hydrobiol Sinica 8: 1–13.Google Scholar
  16. Kobayashi H, Nakans K, Nakamusa M (1977) On the hybrids, 4ng inbuna (C. auratus langsdorfi) × kinbuna (C.auratus subsp.) and their chromosome. Bull Jpn Soc Sci Fish 43: 31–37.Google Scholar
  17. Sambrook J, David W, Russell W (1993) Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press.Google Scholar
  18. Schartl M, Nanda I, Schlupp I et al. (1995) Incorporation of subgenomic amounts of host species DNA in the gynogenetic Amazon molly. Nature 373: 68–71.CrossRefGoogle Scholar
  19. Schlupp I, Nanda I, Dubler M et al. (1998) Dispensable and indispensable genes in an ameiotic fish, the Amazon molly Poecilia formosa. Cytogenet Cell Genet 80: 193–198.PubMedCrossRefGoogle Scholar
  20. Shibata F, Hizume M, Kuroki Y (1999) Chromosome painting of Y chromosomes and isolation of a Y chromosome-speci¢c repetitive sequence in the dioecious plant Rumax axetosa. Chromosoma 108: 266–270.PubMedCrossRefGoogle Scholar
  21. Sumner A (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304–306.PubMedCrossRefGoogle Scholar
  22. Yang L, Yang ST, Wei XH, Gui JF (2001) Genetic diversity among different clones of the gynogenetic silver crucian carp, Carassius auratus gibelio, revealed by transferrin and isozyme markers. Biochem Genet 39: 213–225.PubMedCrossRefGoogle Scholar
  23. Yi MS, Yu QX, Huang X, Liu JD, Guo YQ, Li L, Zhou RJ (2001) Painting the chromosomes of fishes with human sex chromosome-specific DNA probes. Acta GenetSinica 28: 1–6.Google Scholar
  24. Yu XJ, Zhou T, Li YC (1989) Chromosomes of Chinese Fresh-water Fishes. Beijing: S cience Press.Google Scholar
  25. Zhou L, Fan LC, Gui JF (1998) RAPD analysis of incorporation of heterologous genetic materials in multiple species of silver crucian carp. Acta Hydrobiol Sinica 22: 301–306.Google Scholar
  26. Zhou L, Wang Y, Gui JF (2000) Analysis of genetic heterogeneity among five gynogenetic clones of silver crucian carp Carassius auratus gibelio Bloch, based on detection of RAPD molecular markers. Cytogenet Cell Genet 88: 133–139.PubMedCrossRefGoogle Scholar
  27. Zhou L, Wang Y, Gui JF (2001) Molecular analysis of silver crucianca rp (Carassius auratus gibelio Bloch) clones by SCAR markers. Aquaculture 201: 219–228.CrossRefGoogle Scholar
  28. Zhou, L, Gui JF (2002) Karyotype diversity in polyploid gibel carp, Carassius auratus gibelio Bloch. Genetica 115: 223–232.PubMedCrossRefGoogle Scholar
  29. Zhu LF, Jiang Y (1987) Intraspecific genetic markers of crucian carp (Carassius auratus gibelio Bloch) and their application to selective breeding. Acta Hydrobiol Sinica 11: 105–111.Google Scholar
  30. Zhu LF, Jiang Y (1993) A comparative study of the biological characters of gynogenetic clones of silver crucian carp (Carassius auratus gibelio). Acta Hydrobiol Sinica 17: 112–120.Google Scholar
  31. Zou Z, Cui Y, Gui J, Yan Y (2001) Growth and feed utilization in two clones of gibel carp, Carassius auratus gibelio: paternal effects in a gynogenetic fish. J Appl Ichthyol 17: 54–58.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M. S. Yi
    • 1
    • 2
  • Y. Q. Li
    • 3
  • J. D. Liu
    • 3
  • L. Zhou
    • 1
  • Q. X. Yu
    • 3
  • J. F. Gui
    • 1
    Email author
  1. 1.State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of Hydrobiology, Chinese Academy of SciencesWuhanP.R. China
  2. 2.Faculty of Life SciencesHubei UniversityWuhanP.R. China
  3. 3.School of Life SciencesWuhan UniversityWuhanP.R. China

Personalised recommendations