Journal of Inherited Metabolic Disease

, Volume 26, Issue 6, pp 543–557

Mutation and biochemical analysis in carnitine palmitoyltransferase type II (CPT II) deficiency

  • S. E. Olpin
  • A. Afifi
  • S. Clark
  • N. J. Manning
  • J. R. Bonham
  • A. Dalton
  • J. V. Leonard
  • J. M. Land
  • B. S. Andresen
  • A. A. Morris
  • F. Muntoni
  • D. Turnbull
  • M. Pourfarzam
  • S. Rahman
  • R. J. Pollitt
Article

Abstract

Carnitine palmitoyltransferase type II (CPT II) deficiency has three basic phenotypes, late-onset muscular (mild), infantile/juvenile hepatic (intermediate) and severe neonatal. We have measured fatty acid oxidation and CPT II activity and performed mutation studies in 24 symptomatic patients representing the full clinical spectrum of disease. Severe and intermediate phenotypes show a clear correlation with biochemical indices and genetic analysis revealed causative mutations in most patients. Studies of mild phenotypes suggest a more complex interaction, with higher residual fatty acid oxidation, a wider range of CPT II activity (10–60%) but little evidence of genotype-phenotype correlation. Residual CPT II mutant protein from myopathic patients shows thermal instability at 41°C. The common 'polymorphisms' V3681 and M647V are strikingly overrepresented in the myopathic patients, the implication being that they may significantly influence the manifestation of clinical disease and could therefore potentially be considered as a susceptibility variants. Among myopathic individuals, males comprised 88! of patients, suggesting increased susceptibility to clinical disease. A small number of symptomatic patients appear to have significant residual CPT II activity (42–60%) The synergistic interaction of partial deficiencies of CPT II, muscle adenosine monophosphate deaminase and possibly other enzymes of muscle energy metabolism in the aetiology of episodic myopathy deserves wider consideration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Bonnefont J-P, Taroni F, Cavadini P, et al (1996) Molecular analysis of carnitine palmitoyltransferase II deficiency with hepatocardiomuscular expression. Am J Hum Genet 58: 971–978.PubMedGoogle Scholar
  2. Bonnefont J-P, Demaugre F, Prip-Buus C, et al (1999) Carnitine palmitoyltransferase deficiencies. Mol Genet Metab 68: 424–440.PubMedCrossRefGoogle Scholar
  3. Carter S, McKenzie S, Mourtzakis M, et al (2001) Short-term 17-j-estradiol decreases glu-cose R(a) but not whole body metabolism during exercise. J Appl Physiol 90: 139–146.PubMedGoogle Scholar
  4. Corydon TJ, Bross P, Jensen TG, et al (1998) Rapid degradation of short-chain acyl-CoA dehydrogenase (SCAD) variants with temperature-sensitive folding defects occurs after import into mitochondria. J Biol Chem 273: 13065–13071.PubMedCrossRefGoogle Scholar
  5. Demaugre F, Bonnefont J-P, Colonna M, Cepanec C, Leroux JP, Saudubray JM (1991) Infantile form of carnitine palmitoyltransferase II deficiency with hepatomuscular symp-toms and sudden death. Physiopathalogical approach to carnitine palmitoyltransferase II deficiencies. J Clin Invest 87: 859–864.PubMedCrossRefGoogle Scholar
  6. Demaugre F, Bonnefont J-P, Brivet M, et al (1992) Pathophysiological approach to carnitine palmitoyltransferase II deficiencies. In Coates PM, Tanaka K, eds. New Developments in Fatty Acid Oxidation. New York: Wiley-Liss, 301–308.Google Scholar
  7. Dimauro S, Papadimitriou A (1986) Carnitine palmitoyltransferase deficiency. In Engel AG, Banker BQ, eds; Myology. New York: McGraw-Hill, 1697–1708.Google Scholar
  8. Djouadi F, Weinheimer CJ, Saffitz JE, et al (1998) A gender-related defect in lipid metabolism and glucose homeostasis in peroxisomal proliferator-activated receptor alpha-deficient mice. J Clin Invest 102(6): 1083–1091.PubMedGoogle Scholar
  9. Fishbein WN (1999) Primary, secondary and coincidental types of myoadenylate deaminase deficiency. Ann Neurol 45(4): 547–548.PubMedCrossRefGoogle Scholar
  10. Gregersen N, Bross P, Jorgensen MM, et al (2000) Defective folding and rapid degradation of mutant proteins is a common disease mechanism in genetic disorders. J Inherit Metab Dis 23: 441–447.PubMedCrossRefGoogle Scholar
  11. Gregersen N, Winter VS, Corydon MJ, et al (1998) Identification of four new mutations in the short chain acyl-CoA dehydrogenase (SCAD) gene in two patients: One of the variant alleles, 511—+T, is present in an unexpectedly high frequency in the general population, as was the case for the 625—A, together conferring susceptibility to ethylmalonic aciduria. Hum Mol Genet 7: 619–627.PubMedCrossRefGoogle Scholar
  12. Gross M, Rotzer E, Kolle P, et al (2002) A G468-T AMPD1 mutant allele contributes to the high incidence of myoadenylate deaminase deficiency in the caucasian population. Neuromusc Disord 12(6): 558–565.PubMedCrossRefGoogle Scholar
  13. Handig I, Dams E, Taroni F, et al (1996) Inheritance of the S113L mutation within an inbred family with carnitine palmitoyltransferase enzyme deficiency. Hum Genet 97: 291–293.PubMedCrossRefGoogle Scholar
  14. Hargreaves IP, Heales SJR, Olpin SE, Morgan-Hughes JA, Land JM (2000) The diagnosis of carnitine palmitoyltransferase II deficiency is now possible in small skeletal muscle biopsies. J Inherit Metab Dis 23: 352–354.PubMedCrossRefGoogle Scholar
  15. Hug G, Bove KE, Soukup S (1991) Lethal neonatal multiorgan deficiency of carnitine palmitoyltransferase II. N Engl J Med 325: 1862–1864.PubMedCrossRefGoogle Scholar
  16. Ijlst L, Hendriksen AGJ, Ruiter JPN, Wanders RJA (1999) Molecular basis of CPT II deficiency: identification of 9 novel mutations. J Inherit Metab Dis 22(supplement 1): 113.Google Scholar
  17. Kaufmann P, El-Schahawi M, DiMaurio S (1997) Carnitine palmitoyltransferase II deficiency: diagnosis by molecular analysis of blood. Mol Cell Biochem 174: 237–239.PubMedCrossRefGoogle Scholar
  18. Manning NJ, Olpin SE, Pollitt RJ, Webley J (1990) A comparison of [9,10-3H]myristic acids for the detection of fatty acid oxidation defects in intact cultured fibroblasts. Jlnherit Metab Dis 13: 58–68.CrossRefGoogle Scholar
  19. Martin MA, Rubio JC, De Bustos F, et al (1999) Molecular analysis in Spanish patients with muscle carnitine palmitoyltransferase deficiency. Muscle Nerve 22(7): 941–943.PubMedCrossRefGoogle Scholar
  20. McGarry J, Woeltje K, Kuwajima M, Foster D (1989) Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev 5: 271–284.PubMedCrossRefGoogle Scholar
  21. Morisaki T, Gross M, Morisaki H, et al (1992) Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc Natl Acad Sci USA 89: 6457–6461.PubMedCrossRefGoogle Scholar
  22. Olpin SE, Manning NJ, Carpenter K, Middleton B, Pollitt RJ (1992) Differential diagnosis of hydroxydicarboxylic aciduria based on release of 3H20 from [9,10-3H] myristic and [9,10-3H] palmitic acids by intact cultured fibroblasts. J Inherit Metab Dis 15: 883–890.PubMedCrossRefGoogle Scholar
  23. Olpin SE, Manning NJ, Pollitt RJ, Clarke S (1997) [9,10-3H]Oleic acid for the improved detection of long chain fatty acid oxidation defects in intact cells. J Inherit Metab Dis 20: 415–419.PubMedCrossRefGoogle Scholar
  24. Roe CR, Coates PM (1995) Mitochondrial fatty acid oxidation disorders. In Scriver C, Sly WS, Valle D, eds; The Metabolic and Molecular Bases of Inherited Disease, 7th edn. New York: McGraw-Hill, 1501–1533.Google Scholar
  25. Ruby BC, Robergs RA, Waters DL, Burge M, Mermier C, Stolarczyk L (1997) Effects of estradiol on substrate turnover during exercise in amenorrheic females. Med Sci Sports Exerc 29: 1160–1169.PubMedGoogle Scholar
  26. Sabina RL (2000) Myoadenylate deaminase deficiency. A common inherited defect with heterogeneous clinical presentation. Neurol Clin 18: 185–194.PubMedCrossRefGoogle Scholar
  27. Taggart RT, Smail D, Apolito C, Vladutiu D (1999) Novel mutations associated with carnitine palmitoyltransferase II deficiency. Hum Mutat 13: 210–220.PubMedCrossRefGoogle Scholar
  28. Taroni F, Verderio E, Garavaglia B, et al (1992a) Biochemical and molecular studies of carnitine palmitoyltransferase II deficiency with hepatocardiomyopathic presentation. In: Coates PM, Tanaka K, eds. New Developments in Fatty Acid Oxidation. New York: Wiley-Liss, 521–531.Google Scholar
  29. Taroni F, Verderio E, Fiorucci S, et al (1992b) Molecular characterisation of inherited carnitine palmitoyltransferase II deficiency. Proc Natl Acad Sci USA 89: 8429–8433.PubMedCrossRefGoogle Scholar
  30. Taroni F, Verderio E, Dworzak F, et al (1993) Identification of a common mutation in the carnitine palmitoyltransferase II gene in familial recurrent myoglobinuria patients. Nature Genetics 4: 314–320.PubMedCrossRefGoogle Scholar
  31. Verderio E, Cavadini P, Pandolfo M, DiDonato S, Taroni F (1993) Two novel sequence polymorphisms of the human carnitine palmitoyltransferase II (CPTI) gene. Hum Mol Genet 2(3): 334–342.PubMedGoogle Scholar
  32. Verderio E, Cavadini P, Montermini L, et al (1995) Carnitine palmitoyltransferase II deficiency: structure of the gene and characterisation of two novel disease-causing mutations. Hum Mol Genet 4(1): 19–29.PubMedGoogle Scholar
  33. Vladutiu GD (2001) Heterozygosity: an expanding role in proteomics. Mol Genet Metab 74: 51–63.PubMedCrossRefGoogle Scholar
  34. Vladutiu GD, Smail D (1999) Variant alleles in CPT2 gene are associated with increased susceptibility to carnitine palmitoyltransferase II deficiency: Am J Hum Genet 65: A496.Google Scholar
  35. Vladutiu GD, Hogan K, Saponara I, Tassini L, Conroy J (1993) Carnitine palmitoyltransferase deficiency in malignant hyperthermia. Muscle Nerve 16: 485–491.PubMedCrossRefGoogle Scholar
  36. Vladutiu GD, Bennett MJ, Smail D, et al (2000) A variable myopathy associated with heterozygosity for R503C mutation in the carnitine palmitoyltransferase II gene.Mol Genet Metab 70: 134–141.PubMedCrossRefGoogle Scholar
  37. Vladutiu GD, Bennett MJ, Nadine M, et al (2002) Phenotypic variability among first-degree relatives with carnitine palmitoyltransferase II deficiency. Muscle Nerve 26: 492–498.PubMedCrossRefGoogle Scholar
  38. Vockley J, Rinaldo P, Bennett MJ, Matern D, Vladutiu GD (2000) Synergistic heterozygosity: disease resulting from multiple partial defects in one or more metabolic pathways. Mol Genet Metab 71: 10–18.PubMedCrossRefGoogle Scholar
  39. Vorgerd M, Kubisch C, Burwinkel B, et al (1998) Mutation analysis in myophosphorylase deficiency (McArdle's disease). Ann Neurol 43: 326–331.PubMedCrossRefGoogle Scholar
  40. Weiser T, Deschauer M, Zierz S (1997) Carnitine palmitoyltransferase II deficiency: three novel mutations. Ann Neurol 42: 414.Google Scholar
  41. Yang B-Z, Ding J-H, Roe D, et al (1998) A novel mutation identified in carnitine palmitoyltransferase II deficiency. Mol Genet Metab 63: 110-115.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S. E. Olpin
    • 1
    • 2
  • A. Afifi
    • 3
  • S. Clark
    • 1
  • N. J. Manning
    • 1
  • J. R. Bonham
    • 1
  • A. Dalton
    • 3
  • J. V. Leonard
    • 4
  • J. M. Land
    • 5
  • B. S. Andresen
    • 6
  • A. A. Morris
    • 7
  • F. Muntoni
    • 8
  • D. Turnbull
    • 9
  • M. Pourfarzam
    • 7
  • S. Rahman
    • 4
  • R. J. Pollitt
    • 1
  1. 1.Department of Clinical ChemistrySheffield Children's HospitalUK
  2. 2.Department of Clinical BiochemistrySheffield Children's HospitalSheffieldUK
  3. 3.Department of Molecular GeneticsSheffield Children's HospitalUK
  4. 4.Biochemistry, Endocrinology and Metabolism UnitInstitute of Child HealthLondon
  5. 5.Neurometabolic UnitNational HospitalLondon
  6. 6.Research Unit for Molecular Medicine and Institute for Human GeneticsAarhus UniversityAarhusDenmark
  7. 7.James Spence Institute of Child HealthRoyal Victoria HospitalNewcastleUK
  8. 8.Dubowitz Neuromuscular CentreHammersmith HospitalLondon
  9. 9.School of Clinical NeurosciencesUniversity of NewcastleUK

Personalised recommendations