Journal of Thermal Analysis and Calorimetry

, Volume 73, Issue 3, pp 867–876 | Cite as

Thermal behavior of the coordination compound [Co(urea)6](NO3)2

  • O. Carp
  • L. Patron
  • A. Reller


The coordination compound [Co(urea)6](NO3)2 was synthesized and physico-chemically characterized. The thermal decomposition carried out in dynamic air and inert atmosphere under non-isothermal conditions has been investigated by means of combined thermogravimetry/mass spectrometry, X-ray diffraction, IR and UV-VIS spectroscopy as well as magnetic measurements. The course of the thermal decomposition starts with two-phase transitions (melting and a Oh→Tdconfiguration change of the Co2+ ion) and continues with seven mass loss steps. According to the thermogravimetric and magnetic investigations a dimeric compound, [Co(biuret)(NCO)]2(NO3)2, is assumed to arise. Up ~250°C, an oxohydroxide nitrate intermediate is formed and a gradual oxidation of the Co2+ ions is observed. At 550°C, Co3O4 with mean crystallite sizes of ~150 Ĺ is identified.

non-isothermal analysis Co3O4 urea-cobalt coordination compound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. F. Hoskins, C. J. Mckenzie, I. A. S. Macdonald and R. Robson, J. Chem. Soc.-Dalton Transitions, 11 (1996) 227.Google Scholar
  2. 2.
    S. Uozumi, N. Furutachi, M. Ohba, H. Okawa, D. E. Fenton, K. Shindo, S. Murata and D. Kitko, Inorg. Chem., 37 (1998) 6281.CrossRefGoogle Scholar
  3. 3.
    T. Koga, H. Turatich, T. Nakamura, N. Fukita, M. Ohba, K. Takahashi and H. Okawa, Inorg. Chem., 37 (1998), 989.CrossRefGoogle Scholar
  4. 4.
    R. Thaimattam, N. Reddy, F. Xue, T. C. W. Chak, A. Nanjia and C. R. Desiraju, J. Chem. Soc.-Perkin Trans., 2 (1998) 1783.CrossRefGoogle Scholar
  5. 5.
    T. Todorov, R. Petrova, K. Kossev, J. Macicek and O. Angelova, Acta Crystall. C-Cryst. Struct. Com., 54 (1998) 456.CrossRefGoogle Scholar
  6. 6.
    T. Todorov, R. Petrova, K. Kossev, J. Macicek and O. Angelova, Acta Crystall. C-Cryst. Struct. Com., 54 (1998) 927.CrossRefGoogle Scholar
  7. 7.
    M. D. Hollingsworth and K. D. M. Harris, in J. L. Arwood, D. D. MacNicol, J. E. D. Davies, F. Vogtle, J. M. Lehn (Eds), Comprehenaive Supramolecular Chemistry, Vol. 4, Pergamon, Oxford 1966, Chap. 7, p. 177.Google Scholar
  8. 8.
    B. C. Stojceva-Radovanovic and P. I. Premovic, J. Thermal Anal., 38 (1992) 715.CrossRefGoogle Scholar
  9. 9.
    A. Yogodin, J. Therm. Anal. Cal., 38 (1998) 537.Google Scholar
  10. 10.
    A. Kozak, K. Wieczorek-Ciurowa and A. Pielichowski, J. Thermal Anal., 45 (1995) 1245.Google Scholar
  11. 11.
    V. T. Orlova, E. A. Konstantinova, V. I. Kosterina, M. A. Sherbamski and I. N. Lepeshkov, J. Thermal Anal., 33 (1988) 929.CrossRefGoogle Scholar
  12. 12.
    G. Gyoryova and V. Balek, J. Thermal Anal., 40 (1993) 519.Google Scholar
  13. 13.
    G. Gyoryova and V. Balek, Thermochim. Acta, 269 (1995) 425.CrossRefGoogle Scholar
  14. 14.
    M. Amirnasr, R. Houriet and S. Meghdadi, J. Therm. Anal. Cal., 67 (2002) 623.CrossRefGoogle Scholar
  15. 15.
    L. Patron, O. Carp, I. Mindru, L. Petre and M. Brezeanu, Rev. Roum. Chim., 43 (1998) 173.Google Scholar
  16. 16.
    O. Carp, L. Patron and M. Brezeanu, J. Therm. Anal. Cal., 56 (1999) 561.CrossRefGoogle Scholar
  17. 17.
    O. Carp, L. Patron, L. Diamandescu and A. Reller, Thermochim. Acta, 390 (2002) 169.CrossRefGoogle Scholar
  18. 18.
    K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Ed. 4, Wiley, London 1978.Google Scholar
  19. 19.
    R. B. Penland, S. Mizushima, C. Curran and J. V. Qugliana, J. Am. Chem. Soc., 79 (1957) 1575.CrossRefGoogle Scholar
  20. 20.
    A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam 1968, Chap.9.Google Scholar
  21. 21.
    B. N. Figgis and J. Lewis, Prog. Inorg. Chem., 6 (1964) 37.Google Scholar
  22. 22.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley 1966, p. 866.Google Scholar
  23. 23.
    A. R. Chugtai and R. N. Keller, J. Inorg. Nucl. Chem., 32 (1969) 633.CrossRefGoogle Scholar
  24. 24.
    J. Szakó, G. Pokol, Cs. Novák, Cs. Várhelyi, A. Dobó and G. Liptay, J. Therm. Anal. Cal., 64 (2001) 843.CrossRefGoogle Scholar
  25. 25.
    O. Carp, Rev. Roum.Chim., 46 (2001) 735.Google Scholar
  26. 26.
    B. Lefez, P. Nkeng, J. Lopitaux and G. Poillerat, Mat. Res. Bul., 31 (1996) 1263.CrossRefGoogle Scholar
  27. 27.
    D. ivković, D. T. ivković and D. B. Grujičić, J. Therm. Anal. Cal., 53 (1998) 617.CrossRefGoogle Scholar
  28. 28.
    A. Małecki, R. Gajerski, S. Łabuś, B. Prochwska-Klisch and K. T. Wojciechwski, J. Therm. Anal. Cal., 60 (2000) 17.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publisher/Akadémiai Kiadó 2003

Authors and Affiliations

  • O. Carp
    • 1
  • L. Patron
    • 1
  • A. Reller
    • 2
  1. 1.Institute of Physical Chemistry 'I. G.Murgulescu'BucharestRomania
  2. 2.Solid State ChemistryUniversity of AugsburgAugsburgGermany

Personalised recommendations