Getting into Shape: An Empirical Comparison of Traditional Truss-Based Morphometric Methods with a Newer Geometric Method Applied to New World Cichlids


Body shape is a difficult, but important, trait to quantify. Researchers have traditionally used multivariate analysis of several linear measures ('trusses') across the body form to quantify shape. Newer geometric morphometric methods claim to better estimate shape because they analyze the geometry among the locations of all landmarks simultaneously rather than the linear distances between pairs of landmarks. We tested this claim by comparing the results of several traditional morphometric analyses against a newer geometric analysis involving thin-plate splines (TPS), all applied to a common data set of morphologically variable new world cichlids Amphilophus citrinellus and A. zaliosus. The TPS method yielded slightly stronger evidence of morphological differences among forms, although traditional methods also distinguished the two species. Perhaps our most important result was the idiosyncratic interpretation of shape variation among the traditional truss-based methods, whereas the generation of deformation grids using the TPS approach yielded clear and visually interpretable figures. Our results indicate that geometric morphometrics can be a more effective way to analyze and interpret body form, but also that traditional methods can be relied upon to provide statistical evidence of shape differences, although not necessarily accurate information about the nature of variation in shape.

This is a preview of subscription content, log in to check access.


  1. Adams, D.C. 1999. Methods for shape analysis of landmark data from articulated structures. Evol. Ecol. Res. 1: 959-970.

  2. Adams, D.C. & F.J. Rohlf. 2000. Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study. PNAS 97: 4106-4111.

  3. Adams, D.C., F.J. Rohlf & D.E. Slice. 2003. Geometric morphometrics: ten years of progress following the 'revolution'. Ital. J. Zool. (special issue: in press).

  4. Albertson, R.C. & T.D. Kocher. 2001. Assessing morphological differences in an adaptive trait: a landmark-based morphometric approach. J. Exp. Zool. 289: 385-403.

  5. Atchley, W.R., C.T. Gaskins & D. Anderson. 1976. Statistical properties of ratios. I. Empirical results. Syst. Zool. 25: 563-583.

  6. Barel, C.D.N., M.J.P. van Oijen, F. Witte & L.M. Witte-Maas. 1977. An introduction to the taxonomy and morphology of the haplochromine cichlidae from Lake Victoria: a manual to Greenwood's revision papers. Neth. J. Zool. 27: 333-389.

  7. Barlow, G.W. & J.W. Munsey. 1976. The red devil-Midas-Arrow cichlid species complex in Nicaragua. pp. 350-369. In: T.B. Thorson (ed.) Investigations in the Ichthyofauna of Nicaraguan Lakes, University of Nebraska Press, Lincoln, Nebr.

  8. Bookstein, F.L. 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge Univ. Press, New York. 435 pp.

  9. Bookstein, F.L. 1996. Combining the tools of geometric morphometrics. pp. 131-151. In: L.F. Marcus, M. Corti, A. Loy, G. Naylor & D.E. Slice (ed.) Advances in Morphometrics. NATO ASI Series A: Life Sciences, Vol. 284, Plenum Publishing, New York.

  10. Bookstein, F.L., B. Chernoff, R.L. Elder, J.M. Humphries Jr, G.R. Smith & R.E. Strauss. 1985. Morphometrics in evolutionary biology. Special Publication 15, The Academy of Natural Sciences, Philadelphia. 277 pp.

  11. Bookstein, F.L., K. Schcc¨afer, H. Prossinger, H. Seidler, M. Fieder, C. Stringer, G.W. Weber, J.L. Arsuaga, D.E. Slice, F.J. Rohlf, W. Recheis, A.J. Mariam & L.F. Marcus. 1999. Comparing frontal cranial profiles in archaic and modern Homo by morphometric analysis. Anat. Rec. (New Anat.) 257: 217-224.

  12. Burnaby, T.P. 1966. Growth-invariant discriminant functions and generalized distances. Biometrics 22: 96-110.

  13. Cavalcanti, M.J. & P.R.D. Lopes. 1999. Landmark-based morphometric analysis in selected species of Serranid fishes (Perciformes: Teleostei). Zool. Stud. 38: 287-294.

  14. Caldecutt, W.J. & D.C. Adams. 1998. Morphometrics of trophic osteology in the threespine stickleback, Gasterosteus aculeatus. Copeia 1998: 827-838.

  15. Corti, M. & D. Crosetti. 1996. Geographic variation in the grey mullet: a geometric morphometric analysis using partial warp scores. J. Fish Biol. 48: 255-269.

  16. Corti, M., A. Loy & S. Cataudella. 1996. Form changes in the sea bass, Dicentrarchus labrax (Moronidae: Teleostei), after acclimation to freshwater: an analysis using shape coordinates. Environ. Biol. Fish. 47: 165-175.

  17. Da Fontoura, C. & R.M. Cesar. 2000. Shape Analysis and Classi-fication: Theory and Practice. CRC Press, New York. 659 pp.

  18. Dryden, I.L. & K.V. Mardia 1998. Statistical Shape Analysis. Wiley, New York. 347 pp.

  19. Elazar, J.E. 1982. Multiple Regression in Behavioral Research: Explanation and Prediction, 2nd edition, CBS College Publishing, New York, 822 pp.

  20. Fink, W.L. & M.L. Zelditch. 1995. Phylogenetic analysis of ontogenetic shape transformations: a reassessment of the piranha genus Pygocentrus (Teleostei). Syst. Biol. 44: 343-360.

  21. Fink, W.L. & M.L. Zelditch. 1996. Historical patterns of developmental integration in piranhas. Am. Zool. 36: 61-69.

  22. Humphries J., F.L. Bookstein, B. Chernoff, G. Smith, R. Elder & S. Poss. 1981. Multivariate discrimination by shape in relation to size. Syst. Zool. 30: 291-308.

  23. Jolicoeur, P. 1963. The generalization of the allometry equation. Biometrics. 19: 497-499.

  24. Klingenberg, C.P. & L.J. Leamy. 2001. Quantitative genetics of geometric shape in the mouse mandible. Evolution 55: 2342-2352.

  25. Loy, A., S. Cataudella, & M. Corti. 1996. Shape changes during the growth of the sea bass, Dicentrarchus labrax (Teleostea: Perciformes), in relation to different rearing conditions. An application of thin-plate spline regression analysis. pp. 399-405. In: L.F. Marcus, M. Corti, A. Loy, G.J.P Naylor & D.E. Slice (ed.) Advances in Morphometrics. NATO ASI Series, A: Life Sciences, Vol. 284, Plenum Publishing, New York.

  26. Loy, A., L. Mariani, M. Bertelletti & L. Tunesi. 1998. Visualizing allometry: geometric morphometrics in the study of shape changes in the early stages of the two-banded seabream, Diplodus vulgaris (Perciformes, Sparidae). J. Morphol. 237: 137-146.

  27. Loy, A., S. Busilacchi, C. Costa, F. Ferlin, & S. Cataudella. 2000. Comparing geometric morphometrics and outline fitting methods to monitor fish shape variability of Diplodus puntazzo (Teleostea: Sparidae). Aquat. Eng. 21: 271-283.

  28. Manly, G.F. 1994. Multivariate Statistical Methods: A Primer. Chapman & Hall, London. 215 pp.

  29. Marcus, L. 1990. Traditional morphometrics. pp. 77-123. In: F.J. Rohlf & F.L. Bookstein (ed.) Proceedings of the Michigan Morphometrics Workshop. Special Publication No. 2, University of Michigan Museum of Zoology, Ann Arbor.

  30. Marcus, L.F., M. Corti, A. Loy, G.J.P. Naylor & D.E. Slice (ed.) 1996. Advances in Morphometrics. NATO ASI Series A: Life Sciences, Vol. 284, Plenum, New York. 587 pp.

  31. Meyer, A. 1987. Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution 41: 1357-1369.

  32. Meyer, A. 1989. Costs and benefits of morphological specialization: feeding performance in the trophically polymorphic Neotropical cichlid fish, Cichlasoma citrinellum. Oecologia 80: 431-436.

  33. Meyer, A. 1990a. Ecological and evolutionary aspects of the trophic polymorphism in Cichlasoma citrinellum (Pisces: Cichlidae). Biol. J. Linn. Soc. 39: 279-299.

  34. Meyer, A. 1990b. Morphometrics and allometry of the trophically polymorphic cichlid fish, Cichlasoma citrinellum: alternative adaptations and ontogenetic changes in shape. J. Zool. (Lond.) 221: 237-260.

  35. Rasband. 2000. Scion Image, Scion Corporation, Frederick, Maryland.

  36. Reist, J.D. 1985. An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Can. J. Zool. 230: 513-528.

  37. Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 43: 223-225.

  38. Robinson, B.W., D.S. Wilson, A.S. Margosian & P.T. Lolito. 1993. Ecological and morphological differentiation by pumpkinseed sunfish in lakes without bluegill sunfish. Evol. Ecol. 7: 451-464.

  39. Robinson, B.W. & D. Schluter. 2000. Natural selection and the evolution of adaptive genetic variation in northern freshwater fishes. pp. 65-94. In: T.A. Mousseau, B. Sinervo & J.A. Endler (ed.) Adaptive GeneticVariation in theWild, Oxford University Press, New York, 265 pp.

  40. Rohlf, F.J. & F.L. Bookstein (ed.). 1990. Proceedings of the Michigan Morphometrics Workshop. Special Publication No. 2, University of Michigan Museum of Zoology, AnnArbor, 380 pp.

  41. Rohlf, F.J. & D.E. Slice. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39: 40-59.

  42. Rohlf, F.J. & L.F. Marcus. 1993. A revolution in morphometrics. TREE 8: 129-132.

  43. R¨uber, L. & D.C. Adams. 2001. Evolutionary convergenceof body shape and trophic morphology in cichlids from Lake Tanganyika. J. Evol. Biol. 14: 325-332.

  44. Schlichting, C.D. & M. Pigliucci. 1998. Phenotypic Evolution: A ReactionNormPerspective. Sinauer, Sunderland, Mass, 387 pp.

  45. StatSoft, Inc. 1998. STATISTICA for Windows. Tulsa, OK, 255 pp.

  46. Strauss, R.E. & F.L. Bookstein. 1982. The truss: body form reconstruction in morphometrics. Syst. Zool. 31: 113-135.

  47. Thompson, D.W. 1917. On Growth and Form. Cambridge University Press. Abridged Canto edition (1992). 346 pp.

  48. Wainwright, P.C., C.W. Osenberg & G.G. Mittelbach. 1991. Trophic polymorphism in the pumpkinseed sunfish (Lepomis gibbosus Linnaeus): effects of environment on ontogeny. Funct. Ecol. 5: 40-55.

  49. Walker, J.A. 1997. Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. (Gasterosteidae) body shape. Biol. J. Linn. Soc. 61: 3-50.

  50. Walker, J.A. & M.A. Bell. 2000. Net evolutionary trajectories of body shape evolution within a microgeographic radiation of threespine stickleback (Gasterosteus aculeatus). J. Zool. (Lond.) 252: 293-302.

  51. Webb, P. 1984. Body form, locomotion and foraging in aquatic vertebrates. Am. Zool. 24: 107-120.

  52. Wimberger, P.H. 1991. Plasticity of jaw and skull morphology in the neotropical cichlids Geophagus brasiliensis and G. steindachneri. Evolution 45: 545-563.

  53. Zelditch, M.L., W.L. Fink & D.L. Swiderski. 1995. Morphometrics, homology, and phylogenetics: quantified characters as synapomorphies. Syst. Biol. 44: 179-189.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parsons, K.J., Robinson, B.W. & Hrbek, T. Getting into Shape: An Empirical Comparison of Traditional Truss-Based Morphometric Methods with a Newer Geometric Method Applied to New World Cichlids. Environmental Biology of Fishes 67, 417–431 (2003).

Download citation

  • functional morphology
  • multivariate analysis
  • thin-plate spline
  • divergence
  • ecomorphology
  • body form
  • shape
  • size
  • sympatric speciation
  • Amphilophus citrinellus
  • Amphilophus zaliosus