Environmental Biology of Fishes

, Volume 67, Issue 4, pp 417–431 | Cite as

Getting into Shape: An Empirical Comparison of Traditional Truss-Based Morphometric Methods with a Newer Geometric Method Applied to New World Cichlids

  • Kevin J. Parsons
  • Beren W. Robinson
  • Tomas Hrbek


Body shape is a difficult, but important, trait to quantify. Researchers have traditionally used multivariate analysis of several linear measures ('trusses') across the body form to quantify shape. Newer geometric morphometric methods claim to better estimate shape because they analyze the geometry among the locations of all landmarks simultaneously rather than the linear distances between pairs of landmarks. We tested this claim by comparing the results of several traditional morphometric analyses against a newer geometric analysis involving thin-plate splines (TPS), all applied to a common data set of morphologically variable new world cichlids Amphilophus citrinellus and A. zaliosus. The TPS method yielded slightly stronger evidence of morphological differences among forms, although traditional methods also distinguished the two species. Perhaps our most important result was the idiosyncratic interpretation of shape variation among the traditional truss-based methods, whereas the generation of deformation grids using the TPS approach yielded clear and visually interpretable figures. Our results indicate that geometric morphometrics can be a more effective way to analyze and interpret body form, but also that traditional methods can be relied upon to provide statistical evidence of shape differences, although not necessarily accurate information about the nature of variation in shape.

functional morphology multivariate analysis thin-plate spline divergence ecomorphology body form shape size sympatric speciation Amphilophus citrinellus Amphilophus zaliosus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D.C. 1999. Methods for shape analysis of landmark data from articulated structures. Evol. Ecol. Res. 1: 959-970.Google Scholar
  2. Adams, D.C. & F.J. Rohlf. 2000. Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study. PNAS 97: 4106-4111.Google Scholar
  3. Adams, D.C., F.J. Rohlf & D.E. Slice. 2003. Geometric morphometrics: ten years of progress following the 'revolution'. Ital. J. Zool. (special issue: in press).Google Scholar
  4. Albertson, R.C. & T.D. Kocher. 2001. Assessing morphological differences in an adaptive trait: a landmark-based morphometric approach. J. Exp. Zool. 289: 385-403.Google Scholar
  5. Atchley, W.R., C.T. Gaskins & D. Anderson. 1976. Statistical properties of ratios. I. Empirical results. Syst. Zool. 25: 563-583.Google Scholar
  6. Barel, C.D.N., M.J.P. van Oijen, F. Witte & L.M. Witte-Maas. 1977. An introduction to the taxonomy and morphology of the haplochromine cichlidae from Lake Victoria: a manual to Greenwood's revision papers. Neth. J. Zool. 27: 333-389.Google Scholar
  7. Barlow, G.W. & J.W. Munsey. 1976. The red devil-Midas-Arrow cichlid species complex in Nicaragua. pp. 350-369. In: T.B. Thorson (ed.) Investigations in the Ichthyofauna of Nicaraguan Lakes, University of Nebraska Press, Lincoln, Nebr.Google Scholar
  8. Bookstein, F.L. 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge Univ. Press, New York. 435 pp.Google Scholar
  9. Bookstein, F.L. 1996. Combining the tools of geometric morphometrics. pp. 131-151. In: L.F. Marcus, M. Corti, A. Loy, G. Naylor & D.E. Slice (ed.) Advances in Morphometrics. NATO ASI Series A: Life Sciences, Vol. 284, Plenum Publishing, New York.Google Scholar
  10. Bookstein, F.L., B. Chernoff, R.L. Elder, J.M. Humphries Jr, G.R. Smith & R.E. Strauss. 1985. Morphometrics in evolutionary biology. Special Publication 15, The Academy of Natural Sciences, Philadelphia. 277 pp.Google Scholar
  11. Bookstein, F.L., K. Schcc¨afer, H. Prossinger, H. Seidler, M. Fieder, C. Stringer, G.W. Weber, J.L. Arsuaga, D.E. Slice, F.J. Rohlf, W. Recheis, A.J. Mariam & L.F. Marcus. 1999. Comparing frontal cranial profiles in archaic and modern Homo by morphometric analysis. Anat. Rec. (New Anat.) 257: 217-224.Google Scholar
  12. Burnaby, T.P. 1966. Growth-invariant discriminant functions and generalized distances. Biometrics 22: 96-110.Google Scholar
  13. Cavalcanti, M.J. & P.R.D. Lopes. 1999. Landmark-based morphometric analysis in selected species of Serranid fishes (Perciformes: Teleostei). Zool. Stud. 38: 287-294.Google Scholar
  14. Caldecutt, W.J. & D.C. Adams. 1998. Morphometrics of trophic osteology in the threespine stickleback, Gasterosteus aculeatus. Copeia 1998: 827-838.Google Scholar
  15. Corti, M. & D. Crosetti. 1996. Geographic variation in the grey mullet: a geometric morphometric analysis using partial warp scores. J. Fish Biol. 48: 255-269.Google Scholar
  16. Corti, M., A. Loy & S. Cataudella. 1996. Form changes in the sea bass, Dicentrarchus labrax (Moronidae: Teleostei), after acclimation to freshwater: an analysis using shape coordinates. Environ. Biol. Fish. 47: 165-175.Google Scholar
  17. Da Fontoura, C. & R.M. Cesar. 2000. Shape Analysis and Classi-fication: Theory and Practice. CRC Press, New York. 659 pp.Google Scholar
  18. Dryden, I.L. & K.V. Mardia 1998. Statistical Shape Analysis. Wiley, New York. 347 pp.Google Scholar
  19. Elazar, J.E. 1982. Multiple Regression in Behavioral Research: Explanation and Prediction, 2nd edition, CBS College Publishing, New York, 822 pp.Google Scholar
  20. Fink, W.L. & M.L. Zelditch. 1995. Phylogenetic analysis of ontogenetic shape transformations: a reassessment of the piranha genus Pygocentrus (Teleostei). Syst. Biol. 44: 343-360.Google Scholar
  21. Fink, W.L. & M.L. Zelditch. 1996. Historical patterns of developmental integration in piranhas. Am. Zool. 36: 61-69.Google Scholar
  22. Humphries J., F.L. Bookstein, B. Chernoff, G. Smith, R. Elder & S. Poss. 1981. Multivariate discrimination by shape in relation to size. Syst. Zool. 30: 291-308.Google Scholar
  23. Jolicoeur, P. 1963. The generalization of the allometry equation. Biometrics. 19: 497-499.Google Scholar
  24. Klingenberg, C.P. & L.J. Leamy. 2001. Quantitative genetics of geometric shape in the mouse mandible. Evolution 55: 2342-2352.Google Scholar
  25. Loy, A., S. Cataudella, & M. Corti. 1996. Shape changes during the growth of the sea bass, Dicentrarchus labrax (Teleostea: Perciformes), in relation to different rearing conditions. An application of thin-plate spline regression analysis. pp. 399-405. In: L.F. Marcus, M. Corti, A. Loy, G.J.P Naylor & D.E. Slice (ed.) Advances in Morphometrics. NATO ASI Series, A: Life Sciences, Vol. 284, Plenum Publishing, New York.Google Scholar
  26. Loy, A., L. Mariani, M. Bertelletti & L. Tunesi. 1998. Visualizing allometry: geometric morphometrics in the study of shape changes in the early stages of the two-banded seabream, Diplodus vulgaris (Perciformes, Sparidae). J. Morphol. 237: 137-146.Google Scholar
  27. Loy, A., S. Busilacchi, C. Costa, F. Ferlin, & S. Cataudella. 2000. Comparing geometric morphometrics and outline fitting methods to monitor fish shape variability of Diplodus puntazzo (Teleostea: Sparidae). Aquat. Eng. 21: 271-283.Google Scholar
  28. Manly, G.F. 1994. Multivariate Statistical Methods: A Primer. Chapman & Hall, London. 215 pp.Google Scholar
  29. Marcus, L. 1990. Traditional morphometrics. pp. 77-123. In: F.J. Rohlf & F.L. Bookstein (ed.) Proceedings of the Michigan Morphometrics Workshop. Special Publication No. 2, University of Michigan Museum of Zoology, Ann Arbor.Google Scholar
  30. Marcus, L.F., M. Corti, A. Loy, G.J.P. Naylor & D.E. Slice (ed.) 1996. Advances in Morphometrics. NATO ASI Series A: Life Sciences, Vol. 284, Plenum, New York. 587 pp.Google Scholar
  31. Meyer, A. 1987. Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution 41: 1357-1369.Google Scholar
  32. Meyer, A. 1989. Costs and benefits of morphological specialization: feeding performance in the trophically polymorphic Neotropical cichlid fish, Cichlasoma citrinellum. Oecologia 80: 431-436.Google Scholar
  33. Meyer, A. 1990a. Ecological and evolutionary aspects of the trophic polymorphism in Cichlasoma citrinellum (Pisces: Cichlidae). Biol. J. Linn. Soc. 39: 279-299.Google Scholar
  34. Meyer, A. 1990b. Morphometrics and allometry of the trophically polymorphic cichlid fish, Cichlasoma citrinellum: alternative adaptations and ontogenetic changes in shape. J. Zool. (Lond.) 221: 237-260.Google Scholar
  35. Rasband. 2000. Scion Image, Scion Corporation, Frederick, Maryland.Google Scholar
  36. Reist, J.D. 1985. An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Can. J. Zool. 230: 513-528.Google Scholar
  37. Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 43: 223-225.Google Scholar
  38. Robinson, B.W., D.S. Wilson, A.S. Margosian & P.T. Lolito. 1993. Ecological and morphological differentiation by pumpkinseed sunfish in lakes without bluegill sunfish. Evol. Ecol. 7: 451-464.Google Scholar
  39. Robinson, B.W. & D. Schluter. 2000. Natural selection and the evolution of adaptive genetic variation in northern freshwater fishes. pp. 65-94. In: T.A. Mousseau, B. Sinervo & J.A. Endler (ed.) Adaptive GeneticVariation in theWild, Oxford University Press, New York, 265 pp.Google Scholar
  40. Rohlf, F.J. & F.L. Bookstein (ed.). 1990. Proceedings of the Michigan Morphometrics Workshop. Special Publication No. 2, University of Michigan Museum of Zoology, AnnArbor, 380 pp.Google Scholar
  41. Rohlf, F.J. & D.E. Slice. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39: 40-59.Google Scholar
  42. Rohlf, F.J. & L.F. Marcus. 1993. A revolution in morphometrics. TREE 8: 129-132.Google Scholar
  43. R¨uber, L. & D.C. Adams. 2001. Evolutionary convergenceof body shape and trophic morphology in cichlids from Lake Tanganyika. J. Evol. Biol. 14: 325-332.Google Scholar
  44. Schlichting, C.D. & M. Pigliucci. 1998. Phenotypic Evolution: A ReactionNormPerspective. Sinauer, Sunderland, Mass, 387 pp.Google Scholar
  45. StatSoft, Inc. 1998. STATISTICA for Windows. Tulsa, OK, 255 pp.Google Scholar
  46. Strauss, R.E. & F.L. Bookstein. 1982. The truss: body form reconstruction in morphometrics. Syst. Zool. 31: 113-135.Google Scholar
  47. Thompson, D.W. 1917. On Growth and Form. Cambridge University Press. Abridged Canto edition (1992). 346 pp.Google Scholar
  48. Wainwright, P.C., C.W. Osenberg & G.G. Mittelbach. 1991. Trophic polymorphism in the pumpkinseed sunfish (Lepomis gibbosus Linnaeus): effects of environment on ontogeny. Funct. Ecol. 5: 40-55.Google Scholar
  49. Walker, J.A. 1997. Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. (Gasterosteidae) body shape. Biol. J. Linn. Soc. 61: 3-50.Google Scholar
  50. Walker, J.A. & M.A. Bell. 2000. Net evolutionary trajectories of body shape evolution within a microgeographic radiation of threespine stickleback (Gasterosteus aculeatus). J. Zool. (Lond.) 252: 293-302.Google Scholar
  51. Webb, P. 1984. Body form, locomotion and foraging in aquatic vertebrates. Am. Zool. 24: 107-120.Google Scholar
  52. Wimberger, P.H. 1991. Plasticity of jaw and skull morphology in the neotropical cichlids Geophagus brasiliensis and G. steindachneri. Evolution 45: 545-563.Google Scholar
  53. Zelditch, M.L., W.L. Fink & D.L. Swiderski. 1995. Morphometrics, homology, and phylogenetics: quantified characters as synapomorphies. Syst. Biol. 44: 179-189.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Kevin J. Parsons
    • 1
  • Beren W. Robinson
    • 1
  • Tomas Hrbek
    • 2
  1. 1.Department of ZoologyUniversity of GuelphGuelphCanada
  2. 2.Department of Anatomy and NeurobiologyWashington UniversitySt. LouisU.S.A

Personalised recommendations