Geometriae Dedicata

, Volume 100, Issue 1, pp 123–155 | Cite as

Gromov's Centralizer Theorem

  • A. Candel
  • R. Quiroga-Barranco


We study the properties of rigid geometric structures and their relation with those of finite type. The main result proves that for a noncompact simple Lie group G acting analytically on a manifold M preserving a finite volume and either a connection or a geometric structure of finite type there is a nontrivial space of globally defined Killing vector fields on the universal cover \(\tilde M\) that centralize the action of G. Several appplications of this result are provided.

simple Lie groups finite type structures analytic actions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amores, A. M.: Vector fields of a finite type G-structure, J. Differential Geom. 14 (1979), 1–6.Google Scholar
  2. 2.
    Candel, A. and Quiroga-Barranco, R.: Connection preserving actions are topologically engaging, to appear in Bol. Soc. Mat. Mexicana.Google Scholar
  3. 3.
    D'Ambra, G. and Gromov, M.: Lectures on transformation groups: geometry and dynamics, In: Surveys in Differential Geometry (Cambridge, Mass., 1990), Lehigh University, Bethlehem, Penn., 1991, pp. 19–111.Google Scholar
  4. 4.
    Feres, R.: Rigid geometric structures and actions of semisimple Lie groups, Preprint.Google Scholar
  5. 5.
    Gromov, M.: Rigid transformations groups, In: Géométrie différentielle (Paris, 1986), Travaux en cours, 33, Hermann, Paris, 1988, pp. 65–139.Google Scholar
  6. 6.
    Guillemin, V. and Sternberg, S.: Deformation theory of pseudogroup structures, Mem. Amer. Math. Soc. 64 (1966).Google Scholar
  7. 7.
    Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, vol. 1, Wiley, New York, 1963.Google Scholar
  8. 8.
    Kobayashi, S.: Transformation Groups in Differential Geometry, Reprint of the 1972 edition. Classics in Math., Springer-Verlag, Berlin, 1995.Google Scholar
  9. 9.
    Kolá ř, I., Michor, P. and Slovák, J.: Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.Google Scholar
  10. 10.
    Narasimhan, R.: Introduction to the Theory of Analytic Spaces, Lecture Notes in Math. 25, Springer-Verlag, Berlin, 1966.Google Scholar
  11. 11.
    Nomizu, K.: On local and global existence of Killing vector fields, Ann. of Math. 72 (1960), 105–120.Google Scholar
  12. 12.
    Patterson, S.: The limit set of a Fuchsian group, Acta Math. 136 (1976), 241–273.Google Scholar
  13. 13.
    Spatzier, R. and Zimmer, R.: Fundamental groups of negatively curved manifolds and actions of semisimple Lie groups, Topology 30 (1991), 591–601.Google Scholar
  14. 14.
    Sullivan, D.: The density at infinity of a discrete group of hyperbolic motions, Publ. Math. I.H.E.S. 50 (1979), 171–202.Google Scholar
  15. 15.
    Zimmer, R.: Ergodic Theory and Semisimple Groups, Monogr. Math. 81, Birkhäuser-Verlag, Basel, 1984.Google Scholar
  16. 16.
    Zimmer, R.: On the automorphism group of a compact Lorentz manifold and other geometric manifolds, Invent. Math. 83 (1986), 411–424.Google Scholar
  17. 17.
    Zimmer, R.: Actions of semisimple groups and discrete subgroups, In: Proc. Internat. Congr. Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, R.I., 1987, pp. 1247–1258.Google Scholar
  18. 18.
    Zimmer, R.: Ergodic theory and the automorphism group of a G-structure, In: C. C. Moore (ed.), Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics, Springer-Verlag, New York, 1987, pp. 247–278.Google Scholar
  19. 19.
    Zimmer, R.: Representations of fundamental groups of manifolds with semisimple transformation group, J. Amer. Math. Soc. 2 (1989), 201–213.Google Scholar
  20. 20.
    Zimmer, R.: Superrigidity, Ratner's theorem and fundamental groups, Israel J. Math. 74 (1991), 199–207.Google Scholar
  21. 21.
    Zimmer, R.: Automorphism groups and fundamental groups of geometric manifolds, Proc. Sympos. Pure Math. 54(3) (1993), 693–710.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • A. Candel
    • 1
  • R. Quiroga-Barranco
    • 2
  1. 1.Department of MathematicsCSUNNorthridgeU.S.A.
  2. 2.Departamento de MatemáticasCINVESTAV-IPNMéxico DFMéxico

Personalised recommendations