Journal of Applied Electrochemistry

, Volume 33, Issue 10, pp 901–908

Electrochemical reduction of indigo in fixed and fluidized beds of graphite granules

Article

Abstract

Reducing agents required in the dyeing process for vat and sulfur dyes cannot be recycled and lead to problematic waste products. The electrochemical reduction of indigo on a fixed bed cathode consisting of graphite granules has been investigated by spectrophotometric experiments in laboratory cells. Experiments yield information about the kinetics and show the possibility of this process for production of water soluble leuco indigo, which offers environmental benefits. The influence of noble metals deposited on the granules and of different pretreatment methods of the graphite is demonstrated. In addition, the immobilization of quinoid molecules on the graphite surface has been investigated.

anthraquinone electrochemical reduction fixed bed graphite indigo modified electrode quinone vat dyes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Marte, Int. Text. Bull., ITB Veredlung 41 (1995) 33.Google Scholar
  2. 2.
    T. Bechtold and A. Turcanu, J. Electrochem. Soc. 149 (2002) D7.Google Scholar
  3. 3.
    A. Roessler, O. Dossenbach, U. Meyer, W. Marte and P. Rys, Chimia 55 (2001) 879.Google Scholar
  4. 4.
    A. Roessler, D. Crettenand, O. Dossenbach, U. Meyer, W. Marte and P. Rys, Electrochim. Acta 47 (2002) 1989.Google Scholar
  5. 5.
    A. Roessler, O. Dossenbach, W. Marte and P. Rys, J. Appl. Electrochem. 32 (2002) 647.Google Scholar
  6. 6.
    C. Merk, J. Botzem, G. Huber and N. Grund, Patent WO 01/ 46497 (2001).Google Scholar
  7. 7.
    C. Merk, G. Huber and A. Weiper-Idelmann, in J. Yoshida, D.G. Peters, M.S. Workentin, (Eds), Reactive Intermediates in Organic and Biological Electrochemistry, In Honor of the Late Professor Eberhard Steckhan, PV 2001-14 (The Electrochemical Society Proceedings Series, Washington, DC, 2001), p. 121.Google Scholar
  8. 8.
    A. Roessler, O. Dossenbach and P. Rys, J. Electrochem. Soc. 150 (2003) D1.Google Scholar
  9. 9.
    A. Roessler, O. Dossenbach, W. Marte and P. Rys, Dyes and Pigment 54 (2002) 141.Google Scholar
  10. 10.
    A.M. Bond, F. Marken, E. Hill, R.G. Compton and H. Hügel, J. Chem. Soc., Perkin Trans. 2 28 (1997) 1735.Google Scholar
  11. 11.
    S. Komorsky-Lovric, J. Electroanal. Chem. 482 (2000) 222.Google Scholar
  12. 12.
    M. Rowe and J.St.H. Davies, J. Chem. Soc. 117 (1920) 1344.Google Scholar
  13. 13.
    M. Lauwiner, P. Rys and J. Wissmann, Applied Catalysis, A: General 172 (1998) 141.Google Scholar
  14. 14.
    F. Atamny and A. Baiker, Surf. Interface Anal. 27 (1999) 512.Google Scholar
  15. 15.
    H. Bönnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joussen and B. Korall, Angew. Chem. 103 (1991) 1344.Google Scholar
  16. 16.
    P. Ramesh and S. Sampath, Analyst 136 (2001) 1872.Google Scholar
  17. 17.
    J.C. Sheehan and G.P. Hess, J. Am. Chem. Soc. 77 (1955) 1067.Google Scholar
  18. 18.
    J.N. Etters, J. Soc. Dyers Colourists 109 (1993) 251.Google Scholar
  19. 19.
    J.F. Richardson and W.N. Zaki, Trans. Inst. Chem. Eng. 32 (1954) 35.Google Scholar
  20. 20.
    Y.G. Ryu, S.I. Pyun, C.S. Kim and D.R. Shin, Carbon 36 (1998) 293.Google Scholar
  21. 21.
    B. Donnet, Carbon 6 (1968) 161.Google Scholar
  22. 22.
    V.A. Garten and D.E. Weiss, Aust. J. Chem. 10 (1957) 309.Google Scholar
  23. 23.
    V.A. Garten and D.E. Weiss, Aust. J. Chem. 8 (1955) 68.Google Scholar
  24. 24.
    K. Kinoshita, ‘Carbon, Electrochemical and Physicochemical Properties’ (J. Wiley & Sons, New York, 1998).Google Scholar
  25. 25.
    N.N. Nemerovets, V.F. Surovikin, S.V. Orekhov, G.V. Sazhin and N.G. Saovnichuk, Solid Fuel Chemistry (Engl. Transl. of Khim. Tverd. Topl.) 14 (1980) 104.Google Scholar
  26. 26.
    L.P. Gilyazetdinov, V.I. Romanova, A.S. Lutokhina, É.I. Tsygankova and I.M. Safronova, J. Appl. Chem. USSR (Engl. Transl. of Zhurnal Prikladnoi Khimii) 49 (1976) 420.Google Scholar
  27. 27.
    M. Acedo-Ramos, V. Gomez-Serrano, C. Valenzuela-Calahorro and A.J. Lopez-Peinado, Spectrosc. Lett. 26 (1993) 1117.Google Scholar
  28. 28.
    A.V. Melezhik, L.V. Makarova and A.A. Chuiko, Russian J. Inorg. Chem. (Engl. Transl. Zhurnal Neorganicheskoi Khimii) 34 (1989) 196.Google Scholar
  29. 29.
    A. Banerjee, B.K. Mazumdar and A. Lahiri, Nature 193 (1962) 267.Google Scholar
  30. 30.
    A. Voet and A.C. Teter, Am. Ink Maker 38 (1960) 44.Google Scholar
  31. 31.
    A. Roessler, PhD thesis No. 15 120, ETH Zurich (2003).Google Scholar
  32. 32.
    R.L. McCreery, Electroanal. Chem. 17 (1991) 221.Google Scholar
  33. 33.
    R.C. Engstrom, Anal. Chem. 54 (1982) 2310.Google Scholar
  34. 34.
    J. Schreurs and E. Barendrecht, Recl. Trav. Chim. Pays-Bas. 103 (1984) 205.Google Scholar
  35. 35.
    T. Bechtold, E. Burtscher and A. Turcanu, J. Electroanal. Chem. 465 (1999) 80.Google Scholar
  36. 36.
    K.S. Tschyong and F.I. Sadow, Textil Praxis 24 (1969) 454.Google Scholar
  37. 37.
    A.P. Brown and F.C. Anson, Anal. Chem. 49 (1977) 2589.Google Scholar
  38. 38.
    M. Sharp, Electrochim. Acta 23 (1978) 287.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • A. Roessler
    • 1
  • D. Crettenand
    • 1
  • O. Dossenbach
    • 1
  • P. Rys
    • 1
  1. 1.Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology (ETH)ZurichSwitzerland

Personalised recommendations