Cancer and Metastasis Reviews

, Volume 23, Issue 1–2, pp 11–27 | Cite as

Genomic instability and colon cancer

  • William M. Grady


Colorectal cancer affected ∼135,000 people in the United States in 2001, resulting in 57,000 deaths. At the cellular level, colorectal cancer results from the progressive accumulation of genetic and epigenetic alterations that lead to the transformation of normal colonic epithelial cells to colon adenocarcinoma cells. The loss of genomic stability appears to be a key molecular and pathogenetic step that occurs early in the tumorigenesis process and serves to create a permissive environment for the occurrence of alterations in tumor suppressor genes and oncogenes. At least three forms of genomic instability have been identified in colon cancer: (1) microsatellite instability (MSI), (2) chromosome instability (i.e. aneusomy, gains and losses of chromosomal regions) (CIN), and (3) chromosomal translocations. Microsatellite instability occurs in ∼15% of colon cancers and results from inactivation of the mutation mismatch repair (MMR) system by either MMR gene mutations or hypermethylation of the MLH1 promoter. MSI promotes tumorigenesis through generating mutations in target genes that possess coding microsatellite repeats, such as TGFBR2 and BAX. CIN is found in the majority of colon cancers and leads to a different pattern of gene alterations that contribute to tumor formation. CIN appears to result primarily from deregulation of the DNA replication checkpoints and mitotic-spindle checkpoints. The mechanisms that induce and influence genomic instability in cancer in general and more specifically in colon cancer are only partly understood and are consequently under intense investigation. These studies have revealed mutation of the mitotic checkpoint regulators BUB1 and BUBR1 and amplification of STK15 in a subset of CIN colon cancers. The etiology of CIN in the other unexplained cases of colon cancer remains to be determined. Hopefully, discovery of the cause and specific role of genomic instability in colon cancer will yield more effective chemotherapy strategies that take advantage of this unique characteristic of cancer cells.

colon cancer mutation genomic instability checkpoints 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fearon E, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell 61: 759–767, 1990Google Scholar
  2. 2.
    Lengauer C, Kinzler K, Vogelstein B: Genetic instabilities in human cancers. Nature 396: 643–649, 1998Google Scholar
  3. 3.
    Kinzler K, Vogelstein B: Lessons from hereditary colorectal cancer. Cell 87: 159–170, 1996Google Scholar
  4. 4.
    Duesberg P, Rausch C, Rasnick D, Hehlmann R: Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proc Natl Acad Sci USA 95: 13692–7, 1998Google Scholar
  5. 5.
    Cahill D, Lengauer C, Yu J, Riggins G, Willson J, Markowitz S, Kinzler K, Vogelstein B: Mutations of mitotic checkpoint genes in human cancers. Nature 392: 300–303, 1998Google Scholar
  6. 6.
    Veigl M, Kasturi L, Olechnowicz J, Ma A, Lutterbaugh J, Periyasamy S, Li G-M, Drummond J, Modrich P, Sedwick D, Markowitz S: Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proceedings of the National Academy of Science 95: 8698–8702, 1998Google Scholar
  7. 7.
    Bardi G, Sukhikh T, Pandis N, Fenger C, Kronborg O, Heim S: Karyotypic characterization of colorectal adenocarcinomas. Genes, Chromosomes, and Cancer 12: 97–109, 1995Google Scholar
  8. 8.
    Abdel-Rahman WM, Katsura K, Rens W, Gorman PA, Sheer D, Bicknell D, Bodmer WF, Arends MJ, Wyllie AH, Edwards PA: Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proc Natl Acad Sci USA 98: 2538–43, 2001Google Scholar
  9. 9.
    Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, Croix BS, Romans KE, Choti MA, Lengauer C, Kinzler KW, Vogelstein B: A phosphatase associated with metastasis of colorectal cancer. Science 294: 1343–6, 2001Google Scholar
  10. 10.
    Eshleman J, Casey G, Kochera M, Sedwick W, Swinler S, Veigl M, Willson J, Stuart S, Markowitz S: Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53. Oncogene 17: 719–725, 1998Google Scholar
  11. 11.
    Lengauer C, Kinzler K, Vogelstein B: Genetic instability in colorectal cancers. Nature 386: 623–627, 1997Google Scholar
  12. 12.
    Zimonjic D, Brooks MW, Popescu N, Weinberg RA, Hahn WC: Derivation of human tumor cells in vitro without widespread genomic instability. Cancer Res 61: 8838–44, 2001Google Scholar
  13. 13.
    Grady W, Markowitz S: Genomic Instability in Colorectal Cancer, Current Opinions in Gastroenterology 16: 62–67, 2000Google Scholar
  14. 14.
    Muhua L, Adames NR, Murphy MD, Shields CR, Cooper JA: A cytokinesis checkpoint requiring the yeast homologue of an APC-binding protein. Nature 393: 487–91, 1998Google Scholar
  15. 15.
    Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, van Es JH, Breukel C, Wiegant J, Giles RH, Clevers H: Mutations in the APC tumor suppressor gene cause chromosomal instability. Nat Cell Biol 3: 433–438, 2001Google Scholar
  16. 16.
    Kaplan KB, Burds AA, Swedlow JR, Bekir SS, Sorger PK, Nathke IS: A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nat Cell Biol 3: 429–432, 2001Google Scholar
  17. 17.
    Jallepalli PV, Lengauer C: Chromosome segregation and cancer: Cutting through the mystery. Nat Rev Cancer 1: 109–117, 2001Google Scholar
  18. 18.
    Aaltonen L, Peltomaki P, Mecklin J-P, Jarvinen H, Jass J, Green J, Lynch H, Watson P, Tallquist G, Juhola M, Sistonen P, Hamilton S, Kinzler K, Vogelstein B, de la Chapelle A: Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Research 54: 1645–1648, 1994Google Scholar
  19. 19.
    Grady W, Rajput A, Myeroff L, Liu D, Kwon K-H, Willis J, Markowitz S: Mutation of the type II transforming growth factor-β receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Research 58: 3101–3104, 1998Google Scholar
  20. 20.
    Jacoby R, Marshall D, Kailas S, Schlack S, Harms B, Love R: Genetic instability associated with adenoma to carcinoma progression in hereditary nonpolyposis colon cancer. Gastroenterology 109: 73–82, 1995Google Scholar
  21. 21.
    Bomme L, Bardi G, Pandis N, Fenger C, Kronborg O, Heim S: Cytogenetic analysis of colorectal adenomas: Karyotypic comparisons of synchronous tumors. Cancer Genetics and Cytogentics 106: 66–71, 1998Google Scholar
  22. 22.
    Ried T, Heselmeyer-Haddad K, Blegen H, Schrock E, Auer G: Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors: A phenotype/genotype correlation. Genes, chromosomes, and cancer 25: 195–204, 1999Google Scholar
  23. 23.
    Rooney P, Murray G, Stevenson D, Haites N, Cassidy J, McLeod H: Comparative genomic hybridization and chromosomal instability in solid tumors. British Journal of Cancer 80: 862–873, 1999Google Scholar
  24. 24.
    Stoler DL, Chen N, Basik M, Kahlenberg MS, Rodriguez-Bigas MA, Petrelli NJ, Anderson GR: The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc Natl Acad Sci USA 96: 15121–15126, 1999Google Scholar
  25. 25.
    Hermsen M, Postma C, Baak J, Weiss M, Rapallo A, Sciutto A, Roemen G, Arends JW, Williams R, Giaretti W, De Goeij A, Meijer G: Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology 123: 1109–1119, 2002Google Scholar
  26. 26.
    Meijer GA, Hermsen MA, Baak JP, van Diest PJ, Meuwissen SG, Belien JA, Hoovers JM, Joenje H, Snijders PJ, Walboomers JM: Progression from colorectal adenoma to carcinoma is associated with non-random chromosomal gains as detected by comparative genomic hybridisation. J Clin Pathol 51: 901–909, 1998Google Scholar
  27. 27.
    Shih IM, Zhou W, Goodman SN, Lengauer C, Kinzler KW, Vogelstein B: Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res 61: 818–822, 2001Google Scholar
  28. 28.
    Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih IM, Vogelstein B, Lengauer C: The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci USA 21: 21, 2002Google Scholar
  29. 29.
    Boland C, Thibodeau S, Hamilton S, Sidransky D, Eshleman J, Burt R, Meltzer S, Bigas-Rodriguez M, Fodde R, Ranzani G, Srivastava S: National Cancer Institute workshop on microsatellite instability for cancer detection and familial predispostion: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Research 58: 5248–5257, 1998Google Scholar
  30. 30.
    Eshleman J, Lang E, Bowerfind G, Parsons R, Vogelstein B, Willson J, Veigl M, Sedwick W, Markowitz S: Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer. Oncogene 10: 33–37, 1995Google Scholar
  31. 31.
    Huang J, Papadopoulos N, McKinley A, Farrington S, Curtis L, Wyllie A, Zheng S, Willson J, Markowitz S, Morin P, Kinzler K, Vogelstein B, Dunlop M: APC mutations in colorectal tumors with mismatch repair deficiency. Proceedings of the National Academy of Science USA 93: 9049–9054, 1996Google Scholar
  32. 32.
    Konishi M, Kikuchi-Yanoshita R, Tanaka K, Muraoka M, Onda A, Okumura Y, Kishi N, Iwama T, Mori T, Koike M, Ushio K, Chiba M, Nomizu S, Konishi F, Utsunomiya J, Miyaka M: Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. Gastroenterology 111: 307–317, 1996Google Scholar
  33. 33.
    Miyaki M, Iijima T, Kimura J, Yasuno M, Mori T, Hayashi Y, Koike M, Shitara N, Iwama T, Kuroki T: Frequent mutation of beta-catenin and APC genes in primary colorectal tumors from patients with hereditary nonpolyposis colorectal cancer, Cancer Res 59: 4506–4509, 1999Google Scholar
  34. 34.
    Fujiwara T, Stolker JM, Watanabe T, Rashid A, Longo P, Eshleman JR, Booker S, Lynch HT, Jass JR, Green JS, Kim H, Jen J, Vogelstein B, Hamilton SR: Accumulated clonal genetic alterations in familial and sporadic colorectal carcinomas with widespread instability in microsatellite sequences. Am J Pathol 153: 1063–1078, 1998Google Scholar
  35. 35.
    Olschwang S, Tiret A, Laurent-Puig P, Muleris M, Parc R, Thomas G: Restriction of ocular fundus lesions to a specific subgroup of APC mutations in adenomatous polyposis coli patients. Cell 75: 959–968, 1993Google Scholar
  36. 36.
    Yamamoto H, Sawai H, Perucho M: Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Research 57: 4420–4426, 1997Google Scholar
  37. 37.
    Yamamoto H, Sawai H, Weber T, Rodriguez-Bigas M, Perucho M: Somatic frameshift mutations in DNA mismatch repair and proapoptosis genes in hereditary nonpolyposis colorectal cancer. Cancer Research 58: 997–1003, 1998Google Scholar
  38. 38.
    Perucho M: Cancer of the microsatellite mutator phenotype. Biological Chemistry 377: 675–684, 1996Google Scholar
  39. 39.
    Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan R, Zborowska E, Kinzler K, Vogelstein B, Brattain M, Willson J: Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268: 1336–1338, 1995Google Scholar
  40. 40.
    Piao Z, Fang W, Malkhosyan S, Kim H, Horii A, Perucho M, Huang S: Frequent frameshift mutations of RIZ in sporadic gastrointestinal and endometrial carcinomas with microsatellite instability. Cancer Res 60: 4701–4704, 2000Google Scholar
  41. 41.
    Wicking C, Simms LA, Evans T, Walsh M, Chawengsaksophak K, Beck F, Chenevix-Trench G, Young J, Jass J, Leggett B, Wainwright B: CDX2, a human homologue of Drosophila caudal, is mutated in both alleles in a replication error positive colorectal cancer. Oncogene 17: 657–459, 1998Google Scholar
  42. 42.
    Mori Y, Yin J, Rashid A, Leggett BA, Young J, Simms L, Kuehl PM, Langenberg P, Meltzer SJ, Stine OC: Instabilotyping: Comprehensive identification off frameshift mutations caused by coding region microsatellite instability. Cancer Res 61: 6046–6049, 2001Google Scholar
  43. 43.
    Mirabelli-Primdahl L, Gryfe R, Kim H, Millar A, Luceri C, Dale D, Holowaty E, Bapat B, Gallinger S, Redston M: β-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway. Cancer Research 59: 3346–3351, 1999Google Scholar
  44. 44.
    Parsons R, Myeroff L, Liu B, Willson J, Markowitz S, Kinzler K, Vogelstein B: Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Research 55: 5548–5550, 1995Google Scholar
  45. 45.
    Schwartz S, Yamamoto H, Navarro M, Maestro M, Reventos J, Perucho M: Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Research 59: 2995–3002, 1999Google Scholar
  46. 46.
    Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB, Redston M, Gallinger S: Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer [see comments]. N Engl J Med 342: 69–77, 2000Google Scholar
  47. 47.
    Watanabe T, Wu TT, Catalano PJ, Ueki T, Satriano R, Haller DG, Benson AB, 3rd, Hamilton SR: Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344: 1196–1206, 2001Google Scholar
  48. 48.
    Messerini L, Ciantelli M, Baglioni S, Palomba A, Zampi G, Papi L: Prognostic significance of microsatellite instability in sporadic mucinous colorectal cancers. Human Pathology 30: 629–634, 1999Google Scholar
  49. 49.
    Feeley K, Fullard J, Heneghan M, Smith T, Maher M, Murphy R, O'Gorman T: Microsatellite instability in sporadic colorectal carcinoma is not an indicator of prognosis. Journal of Pathology 188: 14–17, 1999Google Scholar
  50. 50.
    Iacopetta B, Welch J, Soong R, House A, Zhou X, Hamelin R: Mutation of the transforming growth factor-beta type II receptor gene in right-sided colorectal cancer: Relationship to clinicopathological features and genetic alterations. Journal of Pathology 184: 390–395, 1998Google Scholar
  51. 51.
    Jiricny J: Replication errors: Cha(lle)nging the genome. Embo J 17: 6427–6436, 1998Google Scholar
  52. 52.
    Kolodner RD, Marsischky GT: Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 9: 89–96, 1999Google Scholar
  53. 53.
    Marra G, Boland C: Hereditary nonpolyposis colorectal cancer: The syndrome, the genes, and historical perspective. Journal of the National Cancer Institute 87: 1114–1125, 1995Google Scholar
  54. 54.
    Wijnen JT, Vasen HF, Khan PM, Zwinderman AH, van der Klift H, Mulder A, Tops C, Moller P, Fodde R: Clinical findings with implications for genetic testing in families with clustering of colorectal cancer. N Engl J Med 339: 511–518, 1998Google Scholar
  55. 55.
    Liu B, Parsons R, Papadopoulos N, Nicolaides NC, Lynch HT, Watson P, Jass JR, Dunlop M, Wyllie A, Peltomaki P, de la Chapelle A, Hamilton SR, Vogelstein B, Kinzler KW: Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients [see comments]. Nat Med 2: 169–174, 1996Google Scholar
  56. 56.
    Hemminki A, Peltomaki P, Mecklin JP, Jarvinen H, Salovaara R, Nystrom-Lahti M, de la Chapelle A, Aaltonen LA: Loss of the wild type MLH1 gene is a feature of hereditary nonpolyposis colorectal cancer. Nat Genet 8: 405–410, 1994Google Scholar
  57. 57.
    Peltomaki P, Vasen HF: Mutations predisposing to hereditary nonpolyposis colorectal cancer: Database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer, Gastroenterology 113: 1146–1158, 1997Google Scholar
  58. 58.
    Yan H, Papadopoulos N, Marra G, Perrera C, Jiricny J, Boland CR, Lynch HT, Chadwick RB, de la Chapelle A, Berg K, Eshleman JR, Yuan W, Markowitz S, Laken SJ, Lengauer C, Kinzler KW, Vogelstein B: Conversion of diploidy to haploidy. Nature 403: 723–724, 2000Google Scholar
  59. 59.
    Langer S, Jentsch I, Gangnus R, Yan H, Lengauer C, Speicher MR: Facilitating haplotype analysis by fully automated analysis of all chromosomes in human-mouse hybrid cell lines. Cytogenet Cell Genet 93: 11–15, 2001Google Scholar
  60. 60.
    Liu B, Nicolaides N, Markowitz S, Willson J, Parsons R, Jen J, de la Chapelle A, Hamilton S, Kinzler K, Vogelstein B: Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nature Genetics 9: 48–53, 1995Google Scholar
  61. 61.
    Kane M, Loda M, Gaida G, Lipman J, Mishra R, Goldman H, Jessup J, Kolodner R: Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Research 57: 808–811, 1997Google Scholar
  62. 62.
    Bellacosa A, Cicchillitti L, Schepis F, Riccio A, Yeung A, Matsumoto Y, Golemis E, Genuardi M, Neri G: MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1. Proceedings of the National Academy of Science USA 96: 3969–3974, 1999Google Scholar
  63. 63.
    Percesepe A, Kristo P, Aaltonen L, Ponz de Leon M, de la Chapelle A, Peltomaki P: Mismatch repair genes and mononucleotide tracts as mutation targets in colorectal tumors with different degrees of microsatellite instability. Oncogene 17: 157–163, 1998Google Scholar
  64. 64.
    Herman J, Umar A, Polyak K, Graff J, Ahujia N, Issa JPJ, Markowitz S, Willson J, Hamilton S, Kinzler K, Kane M, Kolodner R, Vogelstein B, Kunkel T, Baylin S: Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proceedings of the National Academy of Science USA 95: 6870–6875, 1998Google Scholar
  65. 65.
    Baylin SB, Herman JG: DNA hypermethylation in tumorigenesis: Epigenetics joins genetics. Trends Genet 16: 168–174, 2000Google Scholar
  66. 66.
    Jones P, Laird P: Cancer epigenetics comes of age. Nature Genetics 21: 163–167, 1999Google Scholar
  67. 67.
    Deng G, Chen A, Hong J, Chae H, Kim Y: Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression, Cancer Research 59: 2029–2033, 1999Google Scholar
  68. 68.
    Deng G, Chen A, Pong E, Kim YS: Methylation in hMLH1 promoter interferes with its binding to transcription factor CBF and inhibits gene expression. Oncogene 20: 7120–7127, 2001Google Scholar
  69. 69.
    Grady WM, Willis J, Guilford PJ, Dunbier AK, Toro TT, Lynch H, Wiesner G, Ferguson K, Eng C, Park JG, Kim SJ, Markowitz S: Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer [In Process Citation]. Nat Genet 26: 16–17, 2000Google Scholar
  70. 70.
    Esteller M, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Watkins DN, Issa JP, Sidransky D, Baylin SB, Herman JG: Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res 60: 2368–2371, 2000Google Scholar
  71. 71.
    Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB: Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55: 4525–4530, 1995Google Scholar
  72. 72.
    Toyota M, Ho C, Ahuja N, Jair KW, Li Q, Ohe-Toyota M, Baylin SB, Issa JP: Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 59: 2307–2312, 1999Google Scholar
  73. 73.
    Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96: 8681–8686, 1999Google Scholar
  74. 74.
    Ried T, Knutzen R, Steinbeck R, Blegen H, Schrock E, Heselmeyer K, duManoir S, Auer G: Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes, Chromosomes and Cancer 15: 234–245, 1996Google Scholar
  75. 75.
    Phear G, Bhattacharyya N, Meuth M: Loss of heterozygosity and base substitution at the APRT locus in mismatch-repair-proficient and-deficient colorectal carcinoma cell lines. Molecular and Cellular Biology 16: 6516–6523, 1996Google Scholar
  76. 76.
    Sato N, Mizumoto K, Nakamura M, Maehara N, Minamishima YA, Nishio S, Nagai E, Tanaka M: Correlation between centrosome abnormalities and chromosomal instability in human pancreatic cancer cells. Cancer Genet Cytogenet 126: 13–19, 2001Google Scholar
  77. 77.
    Saunders WS, Shuster M, Huang X, Gharaibeh B, Enyenihi AH, Petersen I, Gollin SM: Chromosomal instability and cytoskeletal defects in oral cancer cells. Proc Natl Acad Sci USA 97: 303–308, 2000Google Scholar
  78. 78.
    Amon A: The spindle checkpoint. Curr Opin Genet Dev 9: 69–75, 1999Google Scholar
  79. 79.
    Tang Z, Bharadwaj R, Li B, Yu H: Mad2-Independent inhibition of APCCd c20 by the mitotic checkpoint protein BubR1. Dev Cell 1: 227–237, 2001Google Scholar
  80. 80.
    Li Y, Benezra R: Identification of a human mitotic checkpoint gene: hsMAD2, Science 274: 246–248, 1996Google Scholar
  81. 81.
    Jin D, Spencer F, Jeang K: Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93: 81–91, 1998Google Scholar
  82. 82.
    Dominguez A, Ramos-Morales F, Romero F, Rios RM, Dreyfus F, Tortolero M, Pintor-Toro JA: hpttg, a human homologue of rat pttg, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hPTTG. Oncogene 17: 2187–2193, 1998Google Scholar
  83. 83.
    Saez C, Japon MA, Ramos-Morales F, Romero F, Segura DI, Tortolero M, Pintor-Toro JA: hpttg is over-expressed in pituitary adenomas and other primary epithelial neoplasias. Oncogene 18: 5473–5476, 1999Google Scholar
  84. 84.
    Heaney AP, Singson R, McCabe CJ, Nelson V, Nakashima M, Melmed S: Expression of pituitary-tumor transforming gene in colorectal tumors. Lancet 355: 716–719, 2000Google Scholar
  85. 85.
    Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W, Dobles M, Sorger PK, Murty VV, Benezra R: MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409: 355–359, 2001Google Scholar
  86. 86.
    Cahill DP, da Costa LT, Carson-Walter EB, Kinzler KW, Vogelstein B, Lengauer C: Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics 58: 181–187, 1999Google Scholar
  87. 87.
    Doxsey S: The centrosome-a tiny organelle with big potential. Nature Genetics 20: 104–106, 1998Google Scholar
  88. 88.
    Brinkley BR: Managing the centrosome numbers game: From chaos to stability in cancer cell division. Trends Cell Biol 11: 18–21, 2001Google Scholar
  89. 89.
    Pihan GA, Purohit A, Wallace J, Malhotra R, Liotta L, Doxsey SJ: Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res 61: 2212–2219, 2001Google Scholar
  90. 90.
    Lingle WL, Barrett SL, Negron VC, D'Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C, Salisbury JL: Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99: 1978–1983, 2002Google Scholar
  91. 91.
    Zhou H, Kuang J, Zhong L, Kuo W-l, Gray J, Sahin A, Brinkley B, Sen S: tumor amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genetics 20: 189–193, 1998Google Scholar
  92. 92.
    Sen S, Zhou H, White RA: A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene 14: 2195–2200, 1997Google Scholar
  93. 93.
    Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, Schryver B, Flanagan P, Clairvoyant F, Ginther C, Chan CS, Novotny M, Slamon DJ, Plowman GD: A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. Embo J 17: 3052–3065, 1998Google Scholar
  94. 94.
    Glover DM, Leibowitz MH, McLean DA, Parry H: Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81: 95–105, 1995Google Scholar
  95. 95.
    Francisco L, Wang W, Chan CS: Type 1 protein phosphatase acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation. Mol Cell Biol 14: 4731–4740, 1994Google Scholar
  96. 96.
    Myung K, Datta A, Kolodner RD: Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104: 397–408, 2001Google Scholar
  97. 97.
    Nyberg KA, Michelson RJ, Putnam CW, Weinert TA: Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36: 617–656, 2002Google Scholar
  98. 98.
    Bao S, Chang M-S, Auclair D, Sun Y, Wang Y, Wong WK, Zhang J, Liu Y, Qian X, Sutherland R, Magi-Galluzi C, Weisberg E, Cheng E, Hao L, Sasaki H, Campbell M, Kraeft S-K, Loda M, Lo K-M, Chen L: HRad17, a human homologue of the Schizosaccharomyces pombe checkpoint gene rad17, is overexpressed in colon carcinoma. Cancer Research 59: 2023–2028, 1999Google Scholar
  99. 99.
    Rotman G, Shiloh Y: ATM: From gene to function. Human Molecular Genetics 7: 1555–1563, 1998Google Scholar
  100. 100.
    Smith L: Duplication of ATR inhibits MyoD, induces aneuploidy and eliminates radiation-induced G1 arrest. Nature Genetics 19: 39–46, 1998Google Scholar
  101. 101.
    Zhang H, Tombline G, Weber B: BRCA1, BRCA2, and DNA damage reponse: Collision or collusion. Cell 92: 433–436, 1998Google Scholar
  102. 102.
    Lane D: Awakening angels. Nature 394: 616–617, 1998Google Scholar
  103. 103.
    Rouse J, Jackson SP: Interfaces between the detection, signaling, and repair of DNA damage. Science 297: 547–551, 2002Google Scholar
  104. 104.
    Kolodner RD, Putnam CD, Myung K: Maintenance of genome stability in Saccharomyces cerevisiae. Science 297: 552–557, 2002Google Scholar
  105. 105.
    Ochiai A, Hirohashi S: Multiple genetic alterations in gastric cancer. In: Sugimura T, and Sasako M (eds) Gastric Cancer, pp. 87–99. Oxford University Press, New York, 1997Google Scholar
  106. 106.
    Somasundaram K: Tumor suppressor p53: Regulation and function. Front Biosci 5: D424–D437, 2000Google Scholar
  107. 107.
    Lane DP: Cancer. A death in the life of p53. Nature 362: 786–787, 1993Google Scholar
  108. 108.
    el-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54: 1169–1174, 1994Google Scholar
  109. 109.
    el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B: WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825, 1993Google Scholar
  110. 110.
    Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O'Connor PM, Fornace AJ, Jr. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266: 1376–1380, 1994Google Scholar
  111. 111.
    Lin D, Shields MT, Ullrich SJ, Appella E, Mercer WE: Growth arrest induced by wild-type p53 protein blocks cells prior to or near the restriction point in late G1 phase. Proc Natl Acad Sci USA 89: 9210–9214, 1992Google Scholar
  112. 112.
    Bunz F, Fauth C, Speicher MR, Dutriaux A, Sedivy JM, Kinzler KW, Vogelstein B, Lengauer C: Targeted inactivation of p53 in human cells does not result in aneuploidy. Cancer Res 62: 1129–1133, 2002Google Scholar
  113. 113.
    Glick AB, Weinberg WC, Wu IH, Quan W, Yuspa SH: Transforming growth factor beta 1 suppresses genomic instability independent of a G1 arrest, p53, and Rb [published erratum appears in Cancer Res 1997 May 15;57(10):2079]. Cancer Res 56: 3645–3650, 1996Google Scholar
  114. 114.
    Shadan FF, Cunningham C, Boland CR: JC virus: A biomarker for colorectal cancer? Med Hypotheses 59: 667–669, 2002Google Scholar
  115. 115.
    Felsher DW, Bishop JM: Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci USA96: 3940–3944, 1999Google Scholar
  116. 116.
    Maser RS, DePinho RA: Connecting chromosomes, crisis, and cancer. Science 297: 565–569, 2002Google Scholar
  117. 117.
    Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW: Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015, 1994Google Scholar
  118. 118.
    Rudolph KL, Millard M, Bosenberg MW, DePinho RA: Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 28: 155–159, 2001Google Scholar
  119. 119.
    O'Hagan RC, Chang S, Maser RS, Mohan R, Artandi SE, Chin L, DePinho RA: Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2: 149–155, 2002Google Scholar
  120. 120.
    Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA: Telomere dysfunction promotes nonreciprocal translocations and epithelial cancers in mice. Nature 406: 641–645, 2000Google Scholar
  121. 121.
    Hoglund M, Gisselsson D, Hansen GB, Sall T, Mitelman F, Nilbert M: Dissecting karyotypic patterns in colorectal tumors: Two distinct but overlapping pathways in the adenoma-carcinoma transition. Cancer Res 62: 5939–5946, 2002Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • William M. Grady
    • 1
  1. 1.Vanderbilt University Medical CenterNashville

Personalised recommendations