, Volume 41, Issue 1, pp 61–67 | Cite as

Photosynthetic Characteristics of Two New Chlorophyll b-Less Rice Mutants

  • Zhi-Fang Lin
  • Chang-Lian Peng
  • Gui-Zhu Lin
  • Zhi-Ying Ou
  • Cheng-Wei Yang
  • Jing-Liu Zhang


Two yellow rice mutants VG28-1 and VG30-5 were obtained during the tissue culture process from a rice plant (cv. Zhonghua No.11 japonica) with inserted maize Ds transposon element. Absorption spectra and pigment composition showed that two mutants had no chlorophyll (Chl) b and lower Chl a content in comparison to the wild type (WT). Net photosynthetic rate (PN), total electron transport rate (JF), photochemical quenching (qp), quantum yield of PS2 dependent non-cyclic electron transport (ΦPS2), fraction of Prate, and leaf area were lower but Fv/Fm and apparent quantum yield (AQY) remained at similar levels as in the WT plant. Xanthophyll cycle pool size (V+A+Z) on a Chl basis, and de-epoxidation state were enhanced in the mutants. The mutants had larger amounts of soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), especially the small subunit of RuBPCO, than WT. The characteristics of two rice mutants differed somewhat from the other common Chl b-less mutants originating from mutagenic agent treatments.

chlorophyll absorption spectrum chlorophyll accumulation and degradation carotenoids photosystem 2 activity ribulose-1,5-bisphosphate carboxylase/oxygenase thermal dissipation total electron transport rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abadia, J., Glick, R.E., Taylor, S.E., Terry, N., Melis, A.: Photochemical apparatus organization in the chloroplasts of two Beta vulgaris genotypes.-Plant Physiol. 79: 872-878, 1985.Google Scholar
  2. Adams, W.W., III. Demmig-Adams, B.: Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight.-Planta 186: 390-398, 1992.Google Scholar
  3. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1-15, 1949.Google Scholar
  4. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976.Google Scholar
  5. Demmig-Adams, B., Adams, W.W., III: Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species.-Planta 198: 460-470, 1996.Google Scholar
  6. Demmig-Adams, B., Adams, W.W., III. Barker, D.H., Logan, B.A., Bowling, D.R., Verhoeven, A.S.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation.-Physiol. Plant. 98: 253-264, 1996.Google Scholar
  7. Eggink, L.L., Park, H., Hoobes, J.K.: The role of chlorophyll b in photosynthesis: Hypothesis.-BMC Plant Biol. 1: 2, 2001.Google Scholar
  8. Falbel, T.G., Meehl, J.B., Staehelin, L.A.: Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis.-Plant Physiol. 12: 821-832, 1996.Google Scholar
  9. Falbel, T.G., Stachelin, L.A.: Partial block in the early steps of the chlorophyll synthesis pathway: A common feature of chlorophyll b-deficient mutants.-Physiol. Plant. 97: 311-320, 1996.Google Scholar
  10. Falbel, T.G., Staehelin, L.A., Adams, W.W., III: Analysis of xanthophyll cycle carotenoids and chlorophyll fluorescence in light intensity-dependent chlorophyll-deficient mutants of wheat and barley.-Photosynth. Res. 42: 191-202, 1994.Google Scholar
  11. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-92, 1989.Google Scholar
  12. Ghirardi, M.L., Melis, A.: Chlorophyll b deficiency in soybean mutants I. Effects on photosystem stoichiometry and chlorophyll antenna size.-Biochim. biophys. Acta 932: 130-137, 1988.Google Scholar
  13. Gilmore, A.M., Yamamoto, H.Y.: Resolutions of lutein and zeaxanthin using a non-encapped, lightly carbon-loaded C18 high-performance liquid chromatographic column.-J. Chromatogr. 543: 137-145, 1991.Google Scholar
  14. Greene, B.A., Allred, D.R., Morishige, D.T., Staehelin, L.A.: Hierarchical response of light harvesting chlorophyll-proteins in a light-sensitive chlorophyll b-deficient mutant of maize.-Plant Physiol. 87: 357-364, 1988.Google Scholar
  15. Krall, J.P., Edwards, G.E.: Relationship between photosystem II activity and CO2 fixation in leaves.-Physiol. Plant. 86: 180-187, 1992.Google Scholar
  16. Leverenz, J.W., Öquist, G., Wingsle, G.: Photosynthesis and photoinhibition in leaves of chlorophyll b-less barley in relation to absorbed light.-Physiol. Plant. 85: 495-502, 1992.Google Scholar
  17. Lin, Z.F., Peng, C.L., Lin, G.Z.: Comparative study of the photooxidative response in leaf discs from plants with different photosynthetic pathways.-Acta bot. sin. 40: 721-728, 1998.Google Scholar
  18. Markwell, J.P., Danko, S.J., Bauwe, H., Osterman, J., Gorz, H.J., Haskins, F.A.: A temperature-sensitive chlorophyll b-deficient mutant of sweetclover (Melilotus alba).-Plant Physiol. 81: 329-334, 1986.Google Scholar
  19. Murray, D.L., Kohorn, B.D.: Chloroplasts of Arabidopsis thaliana homozygous for the ch-1 locus lack chlorophyll b, lack stable LHCPII and have stacked thylakoids.-Plant mol. Biol. 16: 71-79, 1991.Google Scholar
  20. Niyogi, K.K., Björkman, O., Grossman, A.R.: The role of specific xanthophylls in photoprotection.-Proc. nat. Acad. Sci. USA 94: 14162-14167, 1997.Google Scholar
  21. Peng, X.X., Peng, S.B.: Degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in naturally senescing rice leaves.-Acta phytophysiol. sin. 26: 46-52, 2000.Google Scholar
  22. Rühle, W., Reiländer, H., Otto, K.D., Wild, A.: Chlorophyll-protein-complexes of thylakoids of wild type and chlorophyll b mutants of Arabidopsis thaliana.-Photosynth. Res. 4: 301-305, 1983.Google Scholar
  23. Terao, T., Yamashita, A.: Chlorina mutants of Oryza sativa L. (cultivar Norin 8) induced by ionizing radiation and chemicals. 1. Two types of chlorina mutant different in chlorophyll a/b ratio and phenotype of F1.-Jap. J. Breed. Suppl. 1: 190-191, 1982.Google Scholar
  24. Terao, T., Yamashita, A., Katoh, S.: Chlorophyll b-deficient mutants of rice. I. Absorption and fluorescence spectra and chlorophyll a/b ratios.-Plant Cell Physiol. 26: 1361-1367, 1985.Google Scholar
  25. Thielen, A.P.G.M., Van Gorkom, H.J.: Quantum efficiency and antenna size of photosystem IIα, IIβ and I in tobacco chloroplasts.-Biochim. biophys. Acta 635: 111-120, 1981.Google Scholar
  26. Wang, J., Lin, L., Wan, X.S., An, L.S., Zhang, J.L., Hong, M.M.: Generation and molecular analysis of a population of transgenic rice plants carrying Ds element.-Acta phytophysiol. sin. 26: 501-506, 2000.Google Scholar
  27. Yang, C.M., Hsu, J.C., Chen, Y.R.: Light-sensitivity of chlorophyll formation in the leaves of Ficus microcarpa cv. Golden leaves.-Bot. Bull. Acad. sin. 36: 215-221, 1995.Google Scholar
  28. Zhao, Y., Du, L.F., Yang, S.H., Li, S.C., Zhang, Y.Z.: Chloroplast composition and structure differences in a chlorophyll-reduced mutant of oilseed rape seedlings.-Acta bot. sin. 43: 877-880, 2001.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Zhi-Fang Lin
    • 1
  • Chang-Lian Peng
    • 1
  • Gui-Zhu Lin
    • 1
  • Zhi-Ying Ou
    • 1
  • Cheng-Wei Yang
    • 1
  • Jing-Liu Zhang
    • 2
  1. 1.South China Institute of Botany, Chinese Academy of SciencesGuangzhouP. R. China
  2. 2.National Key Laboratory of Plant Molecular GeneticsInstitute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiP.R. China

Personalised recommendations