Advertisement

Transgenic Research

, Volume 12, Issue 5, pp 569–575 | Cite as

Biologically Active Human Interferon α-2b Produced in the Egg White of Transgenic Hens

  • Jeffrey C. Rapp
  • Alex J. Harvey
  • Gordon L. Speksnijder
  • Wei Hu
  • Robert Ivarie
Article

Abstract

We have previously described the expression of a bacterial protein in the egg white of transgenic chickens using a replication-deficient retroviral vector. Here we report the expression of a glycosylated human protein, interferon α-2b (hIFN), in the egg white of transgenic hens. The hIFN secreted into the egg white was biologically active as determined by a viral inhibition assay. Purification and carbohydrate analysis of the hIFN expressed in egg white revealed that two of the six major glycosylated hIFN species match the naturally occurring human hIFN glycovariants. These results support the potential of the hen as a bioreactor for the production of commercially valuable, biologically active, and glycosylated proteins in egg white.

bioreactor chickens glycosylation human interferon recombinant protein transgenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bosselman R, Hsu R, Boggs T, Hu S, Bruszewski J, Ou S et al. (1989) Germline transmission of exogenous genes in the chicken. Science 243: 533–535.Google Scholar
  2. Burns JC, Matsubara T, Lozinski G, Yee JK, Friedmann T, Washabaugh CH et al. (1994) Pantropic retroviral vectormediated gene transfer, integration, and expression in cultured newt limb cells. Dev Biol 165: 285–289.Google Scholar
  3. Chung JH, Whiteley M and Felsenfeld G (1993) A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74: 505–514.Google Scholar
  4. Etches RJ (1996). Reproduction in Poultry, Cambridge University Press, Cambridge.Google Scholar
  5. Goeddel DV, Yelverton E, Ullrich A, Heyneker HL, Miozzari G, Holmes W et al. (1980) Human leukocyte interferon produced by E. coli is biologically active. Nature 287: 411–416.Google Scholar
  6. Harvey AJ, Speksnijder G, Baugh LR, Morris JA and Ivarie R (2002a) Expression of exogenous protein in the egg white of transgenic chickens. Nat Biotechnol 20: 396–399.Google Scholar
  7. Harvey AJ, Speksnijder G, Baugh LR, Morris JA and Ivarie R (2002b) Consistent production of transgenic chickens using replication-deficient retroviral vectors and high-throughput screening procedures. Poult Sci 81: 202–212.Google Scholar
  8. Ivarie R (2003) Avian transgenesis: progress towards the promise. Trends Biotechnol 21: 14–19.Google Scholar
  9. Levy JH, Weisinger A, Ziomek CA and Echelard Y (2001) Recombinant antithrombin: production and role in cardiovascular disorder. Semin Thromb Hemost 27: 405–416.Google Scholar
  10. Lewis JA (1987). Biological assays for interferons. In: Clemens MJ, Morris AG and Gearing AJH (eds), Lymphokines and Interferons: A Practical Approach, IRL Press, Washington, DC.Google Scholar
  11. Mizuarai S, Ono K, Yamaguchi K, Nishijima K, Kamihira M and Iijima S (2001) Production of transgenic quails with high frequency of germ-line transmission using VSV-G pseudotyped retroviral vector. Biochem Biophys Res Commun 286: 456–463.Google Scholar
  12. Nyman TA, Kalkkinen N, Tolo H and Helin J (1998) Structural characterisation of N-linked and O-linked oligosaccharides derived from interferon-alpha2b and interferon-alpha14c produced by Sendai-virus-induced human peripheral blood leukocytes. Eur J Biochem 253: 485–493.Google Scholar
  13. Peltola H, Heinonen OP, Valle M, Paunio M, Virtanen M, Karanko V et al. (1994) The elimination of indigenous measles, mumps, and rubella from Finland by a 12-year, two-dose vaccination program. N Engl J Med 331: 1397–1402.Google Scholar
  14. Rubinstein M, Levy WP, Moschera JA, Lai CY, Hershberg RD, Bartlett RT et al. (1981) Human leukocyte interferon: isolation and characterization of several molecular forms. Arch Biochem Biophys 210: 307–318.Google Scholar
  15. Speksnijder G and Ivarie R (2000) A modified method of shell windowing for producing somatic or germline chimeras in fertilized chicken eggs. Poult Sci 79: 1430–1433.Google Scholar
  16. Starr CM, Masada RI, Hague C, Skop E and Klock JC (1996) Fluorophore-assisted carbohydrate electrophoresis in the separation, analysis, and sequencing of carbohydrates. J Chromatogr A 720: 295–321.Google Scholar
  17. Thoraval P, Afanassieff M, Cosset FL, Lasserre F, Verdier G, Coudert F et al. (1995) Germline transmission of exogenous genes in chickens using helper-free ecotropic avian leukosis virus-based vectors. Transgenic Res 4: 369–377.Google Scholar
  18. Watanabe M, Naito M, Sasaki E, Sakurai M, Kuwana T and Oishi T (1994) Liposome-mediated DNA transfer into chicken primordial germ cells in vivo. Mol Reprod Dev 38: 268–274.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jeffrey C. Rapp
    • 1
    • 2
  • Alex J. Harvey
    • 1
  • Gordon L. Speksnijder
    • 1
  • Wei Hu
    • 1
  • Robert Ivarie
    • 2
  1. 1.AviGenics, Inc., Georgia BioBusiness CenterAthensUSA
  2. 2.Department of GeneticsUniversity of GeorgiaAthensUSA

Personalised recommendations