Experimental & Applied Acarology

, Volume 29, Issue 3–4, pp 265–277

Radiation in sexual and parthenogenetic oribatid mites (Oribatida, Acari) as indicated by genetic divergence of closely related species

  • Mark Maraun
  • Michael Heethoff
  • Stefan Scheu
  • Roy A. Norton
  • Gerd Weigmann
  • Richard H. Thomas
Article

Abstract

The D3 domain and its flanking regions of 28S rRNA of four pairs of closely related sexual species (Eupelops hirtus and E. torulosus; Oribatella calcarata and O. quadricornuta; Chamobates voigtsi and Ch. borealis; Liacarus coracinus and L. subterraneus) and four pairs of closely related parthenogenetic species (Nanhermannia nana and Na. coronata; Nothrus silvestris and No. palustris; Tectocepheus sarekensis and T. minor; Camisia spinifer and Ca. segnis) of oribatid mites were sequenced to investigate (1) if the D3 region can be used as a species marker and (2) if there is genetic variation among closely related species pairs and if its magnitude is related to reproductive mode. Furthermore, we investigated the world-wide genetic variation of the D3 region from the oribatid mite species Platynothrus peltifer. There was no intraspecific genetic variation in the D3 region in any of the species studied; it was even identical in two closely related parthenogenetic species (Na. nana and Na. coronata) and two closely related sexual species (E. hirtus and E. torulosus). The genetic differences of the other species pairs indicated that both parthenogenetic and sexual lineages have various ages. On average, however, the differences between the closely related parthenogenetic species were larger than those between closely related sexual species, indicating that parthenogenetic lineages exist historically and may radiate slower than sexual species. The findings of this study support the hypothesis that some of the parthenogenetic oribatid mite taxa (Tectocepheus, Nothrus) are ‘ancient asexuals’. The absence of intraspecific or intra-individual variation in the D3 region of parthenogenetic species is consistent with the presence of concerted evolution in the 28S rRNA gene. From this we infer the existence of a meiotic process, which is consistent with the automixy known from several other parthenogenetic oribatid species.

28S rRNA Ancient asexuals D3 region Molecular evolution Oribatid mites Parthenogenesis Radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkhipova I. and Meselson M. 2000. Transposable elements in sexual and ancient asexual taxa. Proc. Nat. Acad. Sci. USA 97: 14473–14477.PubMedCrossRefGoogle Scholar
  2. Bell G. 1982. The Masterpiece of Nature. The Evolution and Genetics of Sexuality. University of California Press, California.Google Scholar
  3. Cherry T., Szalanski A.L., Todd T.C. and Powers T.O. 1997. The internal transcribed spacer region of Belonolaimus (Nematoda, Belonolaimidae). J. Nemat. 29: 23–39.Google Scholar
  4. Courtright E.M., Wall D.H., Virginia R.A., Frisse L.M., Vida J.T. and Thomas W.K. 2000. Nuclear and mitochondrial DNA sequence diversity in the Antarctic nematode Scottnema lindsayae. J. Nemat. 32: 143–153.Google Scholar
  5. Crow J.F. 1994. Advantages of sexual reproduction. Devel. Gen. 15: 205–213.CrossRefGoogle Scholar
  6. Dover G.A. 1982. Molecular drive-a cohesive mode of species evolution. Nature 299: 111–117.PubMedCrossRefGoogle Scholar
  7. Forsslund K.H. 1963. Notizen über Oribatei (Acari) III. Ent. Tidskr. 84: 282–283.Google Scholar
  8. Frati F. and Carapelli A. 1999. An assessment of the value of nuclear and mitochondrial genes in elucidating the origin and evolution of Isotoma klovstadi Carpenter (Insecta, Collembola). Antarct. Sci. 11: 160–174.Google Scholar
  9. Frati F. and Dell'Ampio E. 2000. Molecular phylogeny of three subfamilies of the Neanuridae (Insecta, Collembola) and the position of the anatarctic species Frisea grisea Schäffer. Pedobiologia 44: 342–360.CrossRefGoogle Scholar
  10. Frati F., Fanciulli P.P., Carapelli A., Dell'Ampio E., Nardi F., Spinsanti G. et al. 2000. DNA sequence analysis to study the evolution of Antarctic Collembola. Ital. J. Zool. Suppl. 1: 133–139.CrossRefGoogle Scholar
  11. Ghiselin M.T. 1974. The Economy of Nature and the Evolution of Sex. University of California Press, California.Google Scholar
  12. Gittenberger E. 1991. What about non-adaptive radiation? Biol. J. Linn. Soc. 43: 263–272.Google Scholar
  13. Givnish T.J. and Sytsma K.J. 1997. Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge.Google Scholar
  14. Goto H.E. 1960. Facultative parthenogenesis in Collembola (Insecta). Nature 188: 958–959.CrossRefGoogle Scholar
  15. Hamilton W.D. 1980. Sex versus non-sex versus parasite. Oikos 35: 282–290.Google Scholar
  16. Hammer M. and Wallwork J.A. 1979. A review of the world distribution of oribatid mites (Acari: Cryptostigmata) in relation to continental drift. Biol. Skr. Dan. Vid. Selsk. 22: 1–31.Google Scholar
  17. Heethoff M., Maraun M. and Scheu S. 2000. Genetische Variabilität der ribosomalen ITS 1-Sequenzen bei der parthenogenetischen Hornmilbe Platynothrus peltifer (C.L. Koch, 1839) (Acari: Oribatida). Ber. nat.-med. Ver. Innsbruck 87: 339–354.Google Scholar
  18. Jaenike J. and Selander R.K. 1979. Evolution and ecology of parthenogenesis in earthworms. Am. Zool. 19: 729–737.Google Scholar
  19. John B. 1990. Meiosis. Cambridge University Press, Cambridge.Google Scholar
  20. Judson P.O. and Normark B.B. 1996. Ancient asexual scandals. Trends Ecol. Evol. 11: 41–46.CrossRefGoogle Scholar
  21. Keightley P.D. and Eyre-Walker A. 2000. Deleterious mutations and the evolution of sex. Science 290: 331–333.PubMedCrossRefGoogle Scholar
  22. Kondrashov A.S. 1993. Classification of hypotheses on the advantage of amphimixis. J. Hered. 84: 372–387.PubMedGoogle Scholar
  23. Krivolutsky D.A. and Druk A.Y. 1986. Fossil oribatid mites. Ann. Rev. Entomol. 31: 533–545.CrossRefGoogle Scholar
  24. Little T.J. and Hebert P.D.N. 1996. Ancient asexuals: scandals or artefacts? Trends Ecol Evol. 11: 296–297.CrossRefGoogle Scholar
  25. Litvaitis M.K., Nunn G., Thomas W.K. and Kocher T.D. 1994. A molecular approach for the identification of meiofaunal turbellarians (Platyhelminthes, Turbellaria). Mar. Biol. 120: 437–442.CrossRefGoogle Scholar
  26. Litvaitis M.K., Bates J.W., Hope W.D. and Moens T. 2000. Inferring a classification of the Adenophorea (Nematoda) from nucleotide sequences of the D3 expansion segment (26/28S rDNA). Can. J. Zool. 78: 911–922.CrossRefGoogle Scholar
  27. Lynch M. 1984. Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Quart. Rev. Biol. 59: 257–290.CrossRefGoogle Scholar
  28. Macfadyen A. 1961. Improved funnel-type extractors for soil arthropods. J. Animal Ecol. 30: 171–184.CrossRefGoogle Scholar
  29. Maraun M., Migge S., Schaefer M. and Scheu S. 1998. Selection of microfungal food by six oribatid mite species (Oribatida, Acari) from two different beech forests. Pedobiologia 42: 232–240.Google Scholar
  30. Maraun M. and Scheu S. 2000. The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23: 374–383.CrossRefGoogle Scholar
  31. Muller H.J. 1964. The relation of recombination to mutational advance. Mut. Res. 1: 2–9.Google Scholar
  32. Nei M., Rogozin I.B. and Piontkivska H. 2000. Purifying selection and birth-and-death evolution in the ubiquitin gene family. Proc. Nat. Acad. Sci. USA 26: 10866–10871.CrossRefGoogle Scholar
  33. Norton R.A. and Kethley J.B. 1989. Berlese's North American oribatid mites: historical notes, recombinations, synonymies and type designations. Redia 62: 421–499.Google Scholar
  34. Norton R.A. and Palmer S.C. 1991. The distribution, mechanisms, and evolutionary significance of parthenogenesis in oribatid mites. In: Schuster R. and Murphy P.W. (eds), The acari: reproduction, development and life-history strategies. Chapman and Hall, London, pp. 107–136.Google Scholar
  35. Norton R.A., Bonamo P.M., Grierson J.D. and Shear W.A. 1988. Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. J. Paleont. 62: 259–269.Google Scholar
  36. Norton R.A., Kethley J.B., Johnston D.E. and O'Connor B.M. 1993. Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch D.L. and Ebbert M.A. (eds), Evolution and diversity of sex ratios. Chapman and Hall, New York, pp. 8–99.Google Scholar
  37. Palmer S.C. and Norton R.A. 1991. Taxonomic, geographic and seasonal distribution of thelytokous parthenogenesis in the Desmonomata (Acari: Oribatida). Exp. Appl. Acarol. 12: 67–81.CrossRefGoogle Scholar
  38. Palmer S.C. and Norton R.A. 1992. Genetic diversity in thelytokous oribatid mites (Acari, Acariformes, Desmonomata). Biochem. Syst. Ecol. 20: 219–231.CrossRefGoogle Scholar
  39. Poinar G.O. Jr. and Ricci C. 1992. Bdelloid rotifers in Dominican amber: evidence for parthenogenetic continuity. Experientia 48: 408–410.CrossRefGoogle Scholar
  40. Schluter D. 2000. The ecology of adaptive radiation. Oxford University Press, Oxford.Google Scholar
  41. Schön I. and Butlin R.K. 1998. Genetic diversity and molecular phylogeny. In: Martens K. (ed.), Sex and Parthenogenesis. Evolutionary Ecology of Reproductive Modes in Non-marine Ostracods. Backhuys Publishers, Leiden, pp. 275–293.Google Scholar
  42. Shear W.A., Bonamo M., Grierson J.D., Rolfe W.D.I., Smith E.L. and Norton R.A. 1984. Early land animals in North America: evidence from Devonian age arthropods from Gilboa, New York. Science 224: 492–494.PubMedGoogle Scholar
  43. Siepel H. 1994. Life-history tactics of soil microarthropods. Biol. Fertil. Soil 18: 263–278.CrossRefGoogle Scholar
  44. Sohn I.G. 1988. Darwinulocopina (Crustacea: Podocopa), a new suborder proposed for non-marine Paleozoic to Holocene Ostracoda. Proc. Biol. Soc. Wash. 101: 817–824.Google Scholar
  45. Suomalainen E., Saura A. and Lokki J. 1987. Cytology and Evolution in Parthenogenesis. CRC Press, Inc., Boca Raton, Florida.Google Scholar
  46. Szalanski A.L., Sui D.D., Harris T.S. and Powers T.O. 1997. Identification of cyst nematodes of agronomic and regulatory concern with PCR-RFLP of ITS1. J. Nemat. 29: 255–267.Google Scholar
  47. Taberly G. 1987a. Recherches sur la parthénogenè se thélytoque de deux espè ces d'acariens oribatides: Trhypochthonius tectorum (Berlese) et Platynothrus peltifer (Koch). II: Étude anatomique, histologique et cytologique des femelles parthénogénétiques. 1re partie. Acarologia 28: 285–293.Google Scholar
  48. Taberly G. 1987b. Recherches sur la parthénogenè se thélytoque de deux espè ces d'acariens oribatides: Trhypochthonius tectorum (Berlese) et Platynothrus peltifer (Koch). III: Étude anatomique, histologique et cytologique des femelles parthénogenétiques. 2eme partie. Acarologia 28: 389–403.Google Scholar
  49. Taberly G. 1987c. Recherches sur la parthénogenè se thélytoque de deux espè ces d'acariens oribatides: Trhypochthonius tectorum (Berlese) et Platynothrus peltifer (Koch). IV. Observations sur les males ataviques. Acarologia 29: 95–107.Google Scholar
  50. Terhivuo J. and Suara A. 1996. Clone pool and morphometric variation in endogeic and epigeic north-European parthenogenetic earthworms (Oligochaeta: Lumbricidae). Pedobiologia 40: 226–239.Google Scholar
  51. Thompson J.D., Higgins D.G. and Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acid. Res. 22: 4673–4680.Google Scholar
  52. Travé J., André H.M., Taberly G. and Bernini F. 1996. Les Acariens Oribates. Éditions AGAR and SIALF, Belgique.Google Scholar
  53. Van Valen L.M. 1973. A new evolutionary law. Evol. Theory 1: 1–30.Google Scholar
  54. Welsh D.M. and Meselson M. 2000. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211–1215.CrossRefGoogle Scholar
  55. White M.J.D. 1973. Animal Cytology and Evolution. Cambridge University Press, Cambridge.Google Scholar
  56. Wrensch D.L., Kethley J.B. and Norton R.A. 1993. Cytogenetics of holokinetic chromosomes and inverted meiosis: keys to the evolutionary success of mites, with generalizations on eukaryotes. In: Houck M.A. (ed.), Mites: Ecological and Evolutionary Analyses of Life-history Pattern. Chapman and Hall, New York, pp. 282–343.Google Scholar
  57. Wright S. and Finnegan D. 2001. Genome evolution: sex and the transposable element. Current Biol. 11: R296-R299.CrossRefGoogle Scholar
  58. Zijlstra C., Lever A.E.M., Uenk B.J. and Vansilfhout C.H. 1995. Differences between ITS regions of isolates of root-knot nematodes Meliodogyne hapla and M. chitwoodi. Phytopathology 85: 1231–1237.Google Scholar
  59. Zuker M., Mathews D.H. and Turner D.H. 1999. Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In: Barciszewski J. and Clark B.F.C. (eds), RNA Biochemistry and Biotechnology. NATO ASI Series. Kluwer Academic Publishers.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Mark Maraun
    • 1
    • 2
  • Michael Heethoff
    • 2
  • Stefan Scheu
    • 2
  • Roy A. Norton
    • 3
  • Gerd Weigmann
    • 4
  • Richard H. Thomas
    • 1
  1. 1.Department of ZoologyThe Natural History Museum LondonLondonUK
  2. 2.Institut für ZoologieTechnische Universität DarmstadtDarmstadtGermany
  3. 3.College of Environmental Science and Forestry, Faculty of Environmental and Forest BiologyState University of New YorkSyracuseUSA
  4. 4.Institut für Bodenzoologie und ÖkologieFreie Universität BerlinBerlinGermany

Personalised recommendations