Advertisement

Positivity

, Volume 7, Issue 1–2, pp 119–124 | Cite as

Strictly Singular Embeddings Between Rearrangement Invariant Spaces

  • F.L. Hernandez
  • S.Ya. Novikov
  • E.M. Semenov
Article

Keywords

Fourier Analysis Operator Theory Potential Theory Invariant Space Rearrangement Invariant Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldous, D.J.: Subspaces of L 1 via random measures. Trans. Am. Math. Soc. 267 (1981), 445–463.Google Scholar
  2. 2.
    Bergh, J. and Lofstrom, J.: Interpolation spaces. An introduction. Springer, Berlin, 1976.Google Scholar
  3. 3.
    Cobos, F., Manzano, A., Martinez, A. and Matos, P.: On interpolation of strictly singular operators, strictly co-singular operators and related operator ideals. Proc. Royal Soc. Edinburg Sect. A 130 (2000), 971–989.Google Scholar
  4. 4.
    Dacunha-Castelle D. and Krivine J.L.: Sous-espaces de L 1 . Israel J. Math. 26 (1977), 330–351.Google Scholar
  5. 5.
    Garcia del Amo, A., Hernandez, F.L. and Ruiz, C.: Disjointly strictly singular operators and interpolation. Proc. Roy. Soc. Edinburg Sect. A 126 (1996), 1011–1026.Google Scholar
  6. 6.
    Garcia del Amo, A., Hernandez, F.L., Sanchez, V.M. and Semenov, E.M.: Disjointly strictly singular inclusions between rearrangement invariant spaces J. London. Math. Soc. 62 (2000), 239–252.Google Scholar
  7. 7.
    Heinrich, S.:Closed operator ideals and interpolation, J. Funct. Analysis 35 (1980), 397–411.Google Scholar
  8. 8.
    Kranosel'skii, M. and Rutickii, Ya.: Convex Functions and Orlicz Spaces. Noordhoff, Groningen, 1961.Google Scholar
  9. 9.
    Krein, S.G., Petunin, Yu.I. and Semenov, E.M.: Interpolation of Linear Operators. Nauka, Moskow, 1978. English translation, AMS, 1982.Google Scholar
  10. 10.
    Lindenstrauss, J. and Tzafriri, L.: Classical Banach Spaces I. Sequence Spaces. Springer, Berlin, 1977.Google Scholar
  11. 11.
    Lindenstrauss, J. and Tzafriri, L.: Classical Banach Spaces II. Function Spaces. Springer-Verlag. Berlin, 1979.Google Scholar
  12. 12.
    Montgomery-Smith, S. and Semenov, E.M.: Embeddings of rearrangement invariant spaces that are not strictly singular. Positivity 4 (2000), 397–402.Google Scholar
  13. 13.
    Novikov, S.Ya.: Boundary spaces for inclusion map between rearrangement invariant spaces, Collect. Math. 44 (1993), 211–215.Google Scholar
  14. 14.
    Novikov, S.Ya.: Singularities of the embedding operator for symmetric function spaces on [0, 1], Math. Notes 62 (1997), 549–563.Google Scholar
  15. 15.
    Novikov, S.Ya., Semenov, E.M. and Hernandez, F.L.:Strictly singular embeddings, Functional Analysis and Appl. 36 (2002), 31–33.Google Scholar
  16. 16.
    Raynaud, Y.: Complemented Hilbertian subspaces in rearrangement invariant spaces, Illinois J. Math. 39 (1995), 212–250.Google Scholar
  17. 17.
    Rodin, V.A. and Semenov, E.M.: Rademacher series in symmetric spaces, Anal.Math. 1 (1975), 207–222.Google Scholar
  18. 18.
    Rudin, W.: Functional Analysis. McGraw-Hill, New York, 1973.Google Scholar
  19. 19.
    Tokarev, E.V.: Subspaces of symmetric function spaces. Functional Analysis and Applic. 13 (1979), 152–153.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • F.L. Hernandez
    • 1
  • S.Ya. Novikov
    • 2
  • E.M. Semenov
    • 3
  1. 1.Dpto. Analisis Matematico, Facultad MatematicasUniversidad Complutense de MadridMadridSpain
  2. 2.Department of MathematicsSamara State UniversitySamara (Russia
  3. 3.Department of MathematicsVoronezh State UniversityVoronezhRussia

Personalised recommendations