Journal of Computational Neuroscience

, Volume 15, Issue 2, pp 271–281 | Cite as

Decoding Temporal Information Through Slow Lateral Excitation in the Olfactory System of Insects

  • Thomas Nowotny
  • Mikhail I. Rabinovich
  • Ramón Huerta
  • Henry D.I. Abarbanel

Abstract

Sensory information is represented in a spatio-temporal code in the antennal lobe, the first processing stage of the olfactory system of insects. We propose a novel mechanism for decoding this information in the next processing stage, the mushroom body. The Kenyon cells in the mushroom body of insects exhibit lateral excitatory connections at their axons. We demonstrate that slow lateral excitation between Kenyon cells allows one to decode sequences of activity in the antennal lobe. We are thus able to clarify the role of the existing connections as well as to demonstrate a novel mechanism for decoding temporal information in neuronal systems. This mechanism complements the variety of existing temporal decoding schemes. It seems that neuronal systems not only have a rich variety of code types but also quite a diversity of algorithms for transforming different codes into each other.

olfaction odor representation temporal coding sparse coding mushroom body Kenyon cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahissar E, Haidarliu S, Zacksenhouse M (1997) Decoding temporally encoded sensory input by cortical oscillations and thalamic phase comparators. PNAS 94: 11633-11638.CrossRefPubMedGoogle Scholar
  2. Ahissar E, Sosnik R, Haidarliu S (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406: 302-306.CrossRefPubMedGoogle Scholar
  3. Bazhenov M, Stopfer M, Rabinovich MI, Abarbanel HDI, Sejnowski T, Laurent G (2001a) Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron 30: 569-581.CrossRefPubMedGoogle Scholar
  4. Bazhenov M, Stopfer M, Rabinovich MI, Huerta R, Abarbanel HDI, Sejnowski T, Laurent G (2001b) Model of transient oscillatory synchronization in the locust antennal lobe. Neuron 30: 553-567.CrossRefPubMedGoogle Scholar
  5. Buonomano DV, Hickmott PW, Merzenich MM (1997) Context-sensitive synaptic plasticity and temporal-to-spatial transformations in hippocampal†slices. PNAS 94: 10403-10408.CrossRefPubMedGoogle Scholar
  6. Buonomano DV, Merzenich MM(1995) Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267: 1028-1030.PubMedGoogle Scholar
  7. de Belle JS, Heisenberg M (1994) Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263: 692-695.PubMedGoogle Scholar
  8. Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: C Koch, I Segev, eds. Methods in Neuronal Modeling, 2nd ed., MIT Press, Cambridge, MA. pp. 1-26.Google Scholar
  9. Dubnau J, Grady L, Kitamoto T, Tully T (2001) Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411: 476-480.CrossRefPubMedGoogle Scholar
  10. Fortin NJ, Agster KL, Eichenbaum HB (2002) Critical role of the hippocampus in memory for sequence of events. Nature Neurosci. 5: 458-462.PubMedGoogle Scholar
  11. Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn. Mem. 5: 146-156.PubMedGoogle Scholar
  12. Heisenberg M (2003) Mushroom body memoir: From maps to models. Nat. Rev. Neurosci. 4: 266-275.CrossRefPubMedGoogle Scholar
  13. Jeffres LA (1948) A place theory of sound localization. J. Comp. Physiol. Psychol. 41: 35-39.Google Scholar
  14. Laurent G (1999) A systems perspective on early olfactory coding. Science 286: 723-728.CrossRefPubMedGoogle Scholar
  15. Laurent G, MacLeod K, Wehr M (1998) Spatiotemporal structure of olfactory inputs to the mushroom bodies. Learn. & Mem. 5: 124-132.Google Scholar
  16. Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Abarbanel HDI (2001) Odor encoding as an active, dynamical process: Experiments, computation, and theory. Annu. Rev. Neurosci. 24: 263-297.CrossRefPubMedGoogle Scholar
  17. Laurent G, Wehr M, Davidowitz H (1996) Temporal representations of odors in an olfactory network. J. Neurosci. 16: 3837-3847.PubMedGoogle Scholar
  18. Leibold C, Kempter R, van Hemmen JL (2002) Howspiking neurons give rise to a temporal-feature map: From synaptic plasticity to axonal selection. Phys. Rev. E 65: 051915.CrossRefGoogle Scholar
  19. Leitch B, Laurent G (1996) GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J. Comp. Neurol. 372: 487-514.PubMedGoogle Scholar
  20. Lu T, Liang L, Wang X (2001) Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat. Neurosci. 4: 1131-1138.CrossRefPubMedGoogle Scholar
  21. Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297: 359-365.CrossRefPubMedGoogle Scholar
  22. Rabinovich M, Huerta R, Bazhenov M, Kozlov K, Abarbanel HDI (1998) Computer simulations of stimulus dependent state switching in basic circuits of bursting neurons. Phys. Rev. E 58: 6418.CrossRefGoogle Scholar
  23. Rabinovich M, Volkovskii A, Lecanda P, Huerta R, Abarbanel HDI, Laurent G (2001) Dynamical encoding by networks of competing neuron groups: Winnerless competition. Phys. Rev. Lett. 87: 068102.CrossRefPubMedGoogle Scholar
  24. Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic inputs. J. Neurophys. 30: 1138-1168.Google Scholar
  25. Rall W (1989) Cable theory for dendritic neurons. In: C Koch, I Segev, eds. Methods in Neuronal Modeling: From Synapses to Networks, MIT Press, Cambridge. pp. 9-62.Google Scholar
  26. Reich DS, Mechler F, Purpura KP, Victor JD (2000) Interspike intervals, receptive fields, and information encoding in primary visual cortex. J. Neurosci. 20: 1964-1974.PubMedGoogle Scholar
  27. Reich DS, Mechler F, Victor JD (2001) Temporal coding of contrast in primary visual cortex: When, what, and why. J. Neurophysiol. 85: 1039-1050.PubMedGoogle Scholar
  28. Reinagel P, Reid RC (2000) Temporal coding of visual information in the thalamus. J. Neurosci. 20: 5392-5400.PubMedGoogle Scholar
  29. Stopfer M, Bhagavan S, Smith B, Laurent G (1997) Impaired odor discrimination on desynchronization of odor-encoding neural assemblies. Nature 390: 70-74.CrossRefPubMedGoogle Scholar
  30. Stopfer M, Jayaraman V, Laurent G (2003) Spatiotemporal code for odor identity and concentration. In preparation.Google Scholar
  31. Strausfeld NJ, Homberg U, Kloppenburg P (2000) Parallel organization in honey bee mushroom bodies by peptidergic Kenyon cells. J. Comp. Neurol. 428: 760.CrossRefGoogle Scholar
  32. Strausfeld NJ, Li Y (1999) Representation of the calyces in the medial and vertical lobes of cockroach mushroom bodies. J. Comp. Neurol. 409: 626-646.CrossRefPubMedGoogle Scholar
  33. Teyke T, Gelperin A (1999) Olfactory oscillations augment odor discrimination not odor identification by Limax CNS. Neuro Report 10: 1061-1068.Google Scholar
  34. v. Rullen R, Thorpe SJ (2001) Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex. Neural Comp. 13: 1255-1283.CrossRefGoogle Scholar
  35. Wallenstein GV, Eichenbaum H, Hasselmo ME (1998) The hippocampus as an associator of discontiguous events. Trends Neurosci. 21: 317-323.CrossRefPubMedGoogle Scholar
  36. Wehr M, Laurent G (1996) Odor encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384: 162-166.CrossRefPubMedGoogle Scholar
  37. Wehr M, Laurent G (1999) Relationship between afferent and central temporal patterns in the locust olfactory system. J. Neurosci. 19: 381-390.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Thomas Nowotny
    • 1
  • Mikhail I. Rabinovich
    • 1
  • Ramón Huerta
    • 1
  • Henry D.I. Abarbanel
    • 1
    • 2
  1. 1.Institute for Nonlinear ScienceUniversity of California San DiegoLa JollaUSA
  2. 2.Department of Physics and Marine Physical Laboratory (Scripps Institution of Oceanography)University of California San DiegoLa JollaUSA

Personalised recommendations