Advertisement

Journal of Biomolecular NMR

, Volume 27, Issue 4, pp 383–387 | Cite as

Reconstruction of the three-dimensional NMR spectrum of a protein from a set of plane projections

  • Eriks Kupče
  • Ray Freeman
Article

Abstract

Three-dimensional protein NMR spectra can be obtained significantly faster than by traditional methods by a projection-reconstruction procedure related to X-ray tomography. First, two orthogonal projections are acquired in quick two-dimensional experiments with the evolution parameters t1 or t2 set to zero. These projections define a three-dimensional lattice; all cross-peaks must lie on this lattice but not all lattice points are occupied. A third experiment with t1 and t2 incremented simultaneously and in a fixed ratio, generates a projection onto a tilted plane and thus establishes the positions of all the cross-peaks unambiguously. This projection-reconstruction technique has been tested on the 500 MHz three-dimensional HNCO spectrum of ubiquitin.

HNCO projection-reconstruction three-dimensional NMR spectra ubiquitin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aue, W.P., Bartholdi, E. and Ernst, R.R. (1976) J. Chem. Phys., 64, 2229.Google Scholar
  2. Bracewell, R.N. (1956) Austr. J. Phys., 9, 198.Google Scholar
  3. Brutscher, B., Morelle, N., Cordier, F. and Marion, D. (1995) J. Magn. Reson., B109, 338-242.Google Scholar
  4. Chen, J., De Angelis, A.A., Mandelshtam, V.A. and Shaka, A.J. (2003) J. Magn. Reson., 162, 74-89.Google Scholar
  5. Chen, J., Mandelshtam, V.A. and Shaka, A.J. (2000) J. Magn. Reson., 146, 363-368.Google Scholar
  6. Ding, K. and Gronenborn, A. (2002) J. Magn. Reson., 156, 262-268.Google Scholar
  7. Frydman, L., Lupulescu, A. and Scherf, T. (2003) J. Amer. Chem. Soc., 125, 9204-9217.Google Scholar
  8. Frydman, L., Scherf, T. and Lupulescu, A. (2002) Proc. Natl. Acad. Sci. USA, 99, 15859-15862.Google Scholar
  9. Hounsfield, G.N. (1973) Brit. J. Radiol., 46, 1016.Google Scholar
  10. Jeener, J. (1971) Ampère International Summer School, Basko Polje, Yugoslavia.Google Scholar
  11. Kay, L.E., Xu, G.Y. and Yamazaki, T.J. (1994) J. Magn. Reson., A109, 129-133.Google Scholar
  12. Kim, S. and Szyperski, T. (2003) J. Am. Chem. Soc., 125, 1385-1393.Google Scholar
  13. Kozminski, W. and Zhukov, I. (2003) J. Biomol. NMR, 26, 157-166.Google Scholar
  14. Kupče, E. and Freeman, R. (2003a) J. Magn. Reson., 162, 300-310.Google Scholar
  15. Kupče, E. and Freeman, R. (2003b) J. Magn. Reson., 163, 56-63.Google Scholar
  16. Kupče, E. and Freeman, R. (2003c) J. Biomol. NMR, 25, 349-354.Google Scholar
  17. McIntyre, L. and Freeman, R. (1989) J. Magn. Reson., 83, 649-635.Google Scholar
  18. McIntyre, L. Wu, X-L. and Freeman, R. (1990) J. Magn. Reson., 87, 194-201.Google Scholar
  19. Nagayama, K. Bachmann, P. Wüthrich, K. and Ernst, R.R. (1978) J. Magn. Reson., 31, 133.Google Scholar
  20. Szyperski, T., Yeh, D.C., Sukumaran, D.K., Moseley, H.N.B. and Montelione, G.T. (2002) Proc. Natl. Acad. Sci. USA, 99, 8009-8014.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Varian, Inc.Eynsham, OxfordU.K
  2. 2.Jesus CollegeCambridgeU.K.

Personalised recommendations