Catalysis Letters

, Volume 90, Issue 1–2, pp 39–43 | Cite as

Effect of Zr Substitution for Ti in KLaTiO4 for Photocatalytic Water Splitting

  • Vangala R. Reddy
  • Dong Won Hwang
  • Jae Sung Lee
Article

Abstract

The effect of substitution of Zr for Ti in KLaTiO4 with a layered perovskite structure has been studied on the photocatalytic decomposition of water under the UV light irradiation. Both the optical property and the crystallinity of KLaTiO4 were varied by the substitution of Zr for Ti. As Zr content was increased, the crystallinity of KLaZrxTi1-xO4 was increased, which had a positive effect on the photocatalytic activity in the water splitting reaction. However, the direct band gap property was lost gradually with increase of Zr content, which resulted in lowering the photocatalytic activity. As a result, the highest activity was obtained for KLaZr0.3Ti0.7O4. Although the absorption coefficients of photons for KLaZr0.1Ti0.9O4 and KLaTiO4 were higher than those for KLaZr0.3Ti0.7O4, the crystal structure was disordered, which resulted in lowering the activity. The nickel-loaded catalysts showed a higher activity than unloaded perovskites by a factor of greater than 2.

KLaTiO4 photocatalytic water splitting crystallinity optical property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Domen, M. Hara, J. N. Kondo, T. Takata, A. Kudo, H. Kobayashi and Y. Inoue, Korean J. Chem. Eng. 18 (2001) 862.Google Scholar
  2. [2]
    K. Domen, S. Naito, T. Ohnishi and K. Tamaru, Chem. Phys. Lett. 92 (1982) 433.Google Scholar
  3. [3]
    Y. Inoue, T. Kubokawa and K. Sato, J. Chem. Soc., Chem. Commun. (1990) 1298.Google Scholar
  4. [4]
    A. Kudo, A. Tanaka, K. Domen, K. Maruya, K. Aika and T. Ohnishi, J. Catal. 111 (1988) 67.Google Scholar
  5. [5]
    S. Uchida, Y. Yamamoto, Y. Fujishiro, A. Watanabe, O. Ito and T. Sato, J. Chem. Soc. Dalton Trans. 93 (1997) 3229.Google Scholar
  6. [6]
    Y. Inoue, T. Niiyama, Y. Asai and Y. Sato, J. Chem. Soc. Chem. Commun. (1992) 579.Google Scholar
  7. [7]
    T. Takata, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo and K. Domen, J. Photochem. Photobiol., A: Chem. 106 (1997) 45.Google Scholar
  8. [8]
    J. Kim, D. W. Hwang, S. W. Bae, Y. G. Kim and J. S. Lee, Korean J. Chem. Eng. 18 (2001) 941.Google Scholar
  9. [9]
    K. Sayama and H. Arakawa, J. Chem. Soc., Chem. Commun. (1992) 150.Google Scholar
  10. [10]
    K. Sayama and H. Arakawa, J. Phys. Chem. 97 (1993) 53.Google Scholar
  11. [11]
    E. S. Raymond and E. T. Mallouk, J. Solid State Chem. 161 (2001) 225.Google Scholar
  12. [12]
    D. W. Hwang, J. S. Lee, W. Li, and S. H. Oh, J. Phys. Chem., B107 (2003) 4967.Google Scholar
  13. [13]
    M. Machida, S. Murakami, T. Kijima, S. Matsushima and M. Arai, J. Phys. Chem., B105 (2001) 3189.Google Scholar
  14. [14]
    K. Toda, Y. Kameo, S. Kurita, and M. Sato, J. Alloys Compound. 234 (1996) 19.Google Scholar
  15. [15]
    S.-H. Byeon and K. Park, J. Solid State Chem. 121 (1996) 430.Google Scholar
  16. [16]
    P. Blaha, K. Schwarz, J. Luitz, WIEN97; A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties, ISBN 3-9501031-0-4 (Karlheinz Schwarz, Techn. Universitat Wien, Austria, 1999).Google Scholar
  17. [17]
    D. W. Hwang, H. G. Kim, J. Kim, K. Y. Cha, Y. G. Kim and J. S. Lee, J. Catal. 193 (2000) 40.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Vangala R. Reddy
    • 1
  • Dong Won Hwang
    • 1
  • Jae Sung Lee
    • 1
  1. 1.Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations