Cancer and Metastasis Reviews

, Volume 23, Issue 1–2, pp 53–61

TGFβ and Wnt pathway cross-talk

  • Liliana Attisano
  • Etienne Labbé
Article
  • 412 Downloads

Abstract

Transforming growth factor-βs (TGFβ) and Wnts represent two distinct families of secreted molecules each of which utilizes different signaling pathways to elicit their biological effects. These factors regulate numerous developmental events and mutations in components of both pathways have been described in human cancers including colorectal carcinomas. Several studies have demonstrated that TGFβ and Wnt ligands can cooperate to regulate differentiation and cell fate determination by controlling gene expression patterns. In addition, their cooperation in promoting tumorigenesis in mice has been described. Here, we focus on reviewing our current understanding of the molecular mechanisms that may mediate these cooperative effects.

TGFβ Wnt signal transduction smads cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ten Dijke P, Goumans MJ, Itoh F, Itoh S: Regulation of cell proliferation by Smad proteins. J Cell Physiol 191: 1–16, 2002Google Scholar
  2. 2.
    Attisano L, Wrana JL: Signal transduction by the TGF-β superfamily. Science 296: 1646–1647, 2002Google Scholar
  3. 3.
    Moustakas A, Souchelnytskyi S, Heldin C-H: Smad regulation in TGF-β signal transduction. J Cell Sci 114: 4359–4369, 2001Google Scholar
  4. 4.
    Ten Dijke P, Miyazono K, Heldin C-H: Signaling inputs converge on nuclear effectors in TGF-β signaling. Trends Biochem Sci 25: 64–70, 2000Google Scholar
  5. 5.
    Miyazono K: TGF-beta signaling by Smad proteins. Cyto Growth Factor Rev 11: 15–22, 2000Google Scholar
  6. 6.
    Attisano L, Tuen Lee-Hoeflich S: The Smads. Genome Biol 2(8): REVIEWS3010, 2001Google Scholar
  7. 7.
    Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL: SARA, a FYVE domain protein that recruits Smad2 to the TGF-β receptor. Cell 95: 779–791, 1998Google Scholar
  8. 8.
    Arora K, Warrior R: A new Smurf in the village. Dev Cell 1: 441–442, 2001Google Scholar
  9. 9.
    Bonni S, Wang H-R, Causing CG, Kavsak P, Stroschein SL, Luo K, Wrana JL: TGF-β induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol 3: 587–595, 2001Google Scholar
  10. 10.
    Hocevar BA, Brown TL, Howe PH: TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinasedependent, Smad4-independent pathway. EMBO J 18: 1345–1356, 1999Google Scholar
  11. 11.
    Sirard C, Kim S, Mirtsos C, Tadich P, Hoodless PA, Itie A, Maxson R, Wrana JL, Mak TW: Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor β-related signaling. J Biol Chem 275: 2063–2070, 2000Google Scholar
  12. 12.
    Fink SP, Swinler SE, Lutterbaugh JD, Massague J, Thiagalingam S, Kinzler KW, Vogelstein B, Willson JK, Markowitz S: Transforming growth factor-beta-induced growth inhibition in a Smad4 mutant colon adenoma cell line. Cancer Res 61: 256–260, 2001Google Scholar
  13. 13.
    Mulder KM: Role of Ras and Mapks in TGFβ signaling. Cyto Gr Factor Rev 11: 23–35, 2000Google Scholar
  14. 14.
    Engel ME, McDonnell MA, Law BK, Moses HL: Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J Biol Chem 274: 37413–37420, 1999Google Scholar
  15. 15.
    Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E: Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression. J Biol Chem 274: 27161–27167, 1999Google Scholar
  16. 16.
    Sano Y, Harada J, Tashiro S, Gotoh-Mandeville R, Maekawa T, Ishii S: ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-beta signaling. J Biol Chem 274: 8949–8957, 1999Google Scholar
  17. 17.
    Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K: TAB1: An activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 272: 1179–1182, 1996Google Scholar
  18. 18.
    Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL: Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275: 36803–36810, 2000Google Scholar
  19. 19.
    Bhowmick NA, Ghiassim M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, H.L. M: Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12: 27–36, 2001Google Scholar
  20. 20.
    Edlund S, Landstrom M, Heldin CH, Aspenstrom P: Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 13: 902–914, 2002Google Scholar
  21. 21.
    Wakefield LM, Roberts AB: TGF-β signaling: Positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12: 22–29, 2002Google Scholar
  22. 22.
    Derynck R, Akhurst RJ, Balmain A: TGF-β signaling in tumor suppression and cancer progression. Nat Genet 29: 117–129, 2001Google Scholar
  23. 23.
    Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A, Akhurst RJ: TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86: 531–542, 1996Google Scholar
  24. 24.
    Bubb VJ, Curtis LJ, Cunningham C, Dunlop MG, Carothers AD, Morris RG, White S, Bird CC, Wyllie AH: Microsatellite instabilityand the role of hMSH2 in sporadic colorectal cancer. Oncogene 12: 2641–2649, 1996Google Scholar
  25. 25.
    Oft M, Heider K-H, Beug H: TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 8: 1243–1252, 1998Google Scholar
  26. 26.
    Moon RT, Bowerman B, Boutros M, Perrimon N: The promise and perils of Wnt signaling through beta-catenin. Science 296: 1644–1646, 2002Google Scholar
  27. 27.
    Miller JR: The Wnts Gen Biol 3(1): REVIEWS3001, 2001Google Scholar
  28. 28.
    Cadigan KM, Nusse R: Wnt signaling: A common theme in animal development. Genes Dev 11: 3286–3305, 1997Google Scholar
  29. 29.
    Huelsken J, Birchmeier W: New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev 11: 547–553, 2001Google Scholar
  30. 30.
    Smalley MJ, Dale TC: Wnt signaling and mammary tumorigenesis. J Mammary Gland Biol Neoplasia 6: 37–52, 2001Google Scholar
  31. 31.
    Mao J, Wang J, LiuB, Pan W, Farr GH, 3rd, Flynn C, Yuan H, Takada S, Kimelman D, Li L, Wu D: Lowdensity lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell 7: 801–809, 2001Google Scholar
  32. 32.
    Peifer M, McEwen DG: The ballet of morphogenesis: Unveiling the hidden choreographers. Cell 109: 271–274, 2002Google Scholar
  33. 33.
    Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT: The Wnt/Ca2+ pathway: A new vertebrate Wnt signaling pathway takes shape. Trends Genet 16: 279–283, 2000Google Scholar
  34. 34.
    Li Y, Hively WP, Varmus HE: Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene 19: 1002–1009, 2000Google Scholar
  35. 35.
    Nusse R: The Wnt gene Homepage. http://www.stanford. edu/~rnusse/wntwindow.html, 2002Google Scholar
  36. 36.
    Riese J, Yu X, Munnerlyn A, Eresh S, Hsu S-C, Grosschedl R, Bienz M: LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 88: 777–787, 1997Google Scholar
  37. 37.
    Hoppler S, Bienz M: Two different thresholds of wingless signaling with distinct developmental consequences in the Drosophila midgut. Embo J 14: 5016–5026, 1995Google Scholar
  38. 38.
    Klein T, Martinez Arias A: The vestigial gene product provides a molecular context for the interpretation of signals during the development of the wing in Drosophila. Develop 126: 913–925, 1999Google Scholar
  39. 39.
    Kaphingst K, Kunes S: Pattern formation in the visual centers of the Drosophila brain: Wingless acts via decapentaplegic to specify the dorsoventral axis. Cell 78: 437–448, 1994Google Scholar
  40. 40.
    Yu X, Hoppler S, Eresh S, Bienz M: Decapentaplegic, a target gene of the wingless signaling pathway in the Drosophila midgut. Development 122: 849–858, 1996Google Scholar
  41. 41.
    Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W: Requirement for beta-catenin in anterior-posterior axis formation in mice. J Cell Biol 148: 567–578, 2000Google Scholar
  42. 42.
    Waldrip WR, Bikoff EK, Hoodless PA, Wrana JL, Robertson EJ: Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell 92: 797–808, 1998Google Scholar
  43. 43.
    Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J, Mak TW: The tumor suppressor gene Smad4/ Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes & Dev 12: 107–119, 1997Google Scholar
  44. 44.
    Weinstein M, Yang X, Deng C-X: Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. Cyto Growth Factor Rev 11: 49–58, 2000Google Scholar
  45. 45.
    Gu Z, Nomura M, Simpson BB, Lei H, Feijen A, van den Eijnden-van Raaij J, Donahoe PK, Li E: The type I activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse. Genes Dev 12: 844–857, 1998Google Scholar
  46. 46.
    Ding J, Yang L, Yan YT, Chen A, Desai N, Wynshaw-Boris A, Shen MM: Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature 395: 702–707, 1998Google Scholar
  47. 47.
    Zorn AM, Butler K, Gurdon JB: Anterior endomesoderm specification in Xenopus by Wnt/β-catenin and TGF-β signaling pathways. Dev Biol 209: 282–297, 1999Google Scholar
  48. 48.
    Cui Y, Tian Q, Christian JL: Synergistic effects of Vg1 and Wnt signals in the specification of dorsal mesoderm and endoderm. Dev Biol 180: 22–34, 1996Google Scholar
  49. 49.
    Crease DJ, Dyson S, Gurdon JB: Cooperation between the activin and Wnt pathways in the spatial control of organizer gene expression. Proc Nat Acad Sci USA 95: 4398–4403, 1998Google Scholar
  50. 50.
    Nishita M, Hashimoto MK, Ogata S, Laurent MN, Ueno N, Shibuya H, Cho KWY: Interaction between Wnt and TGF-β signaling pathways during formation of Spemann's organizer. Nature 403: 781–785, 2000Google Scholar
  51. 51.
    Labbé E, Letamendia A, Attisano L: Association of Smads with LEF1/TCF mediates cooperative signaling by the TGF β and Wnt pathways. Proc Natl Acad Sci USA 97: 8358–8363, 2000Google Scholar
  52. 52.
    Schohl A, Fagotto F: Beta-catenin, MAPK and Smad signaling during early Xenopus development. Development 129: 37–52, 2002Google Scholar
  53. 53.
    Xanthos JB, Kofron M, Tao Q, Schaible K, Wylie C, Heasman J: The roles of three signaling pathways in the formation and function of the Spemann organizer. Development 129: 4027–4043, 2002Google Scholar
  54. 54.
    Brook WJ, Cohen SM: Antagonistic interactions between wingless and decapentaplegic responsible for dorsal-ventral pattern in the Drosophila Leg. Science 273: 1373–1377, 1996Google Scholar
  55. 55.
    Theil T, Aydin S, Koch S, Grotewold L, Ruther U: Wnt and Bmp signaling cooperatively regulate graded Emx2 expression in the dorsal telencephalon. Development 129: 3045–3054, 2002Google Scholar
  56. 56.
    Willert J, Epping M, Pollack JR, Brown PO, Nusse R: A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol 2: 8, 2002Google Scholar
  57. 57.
    Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF, Taketo MM: Intestinal tumorigenesis in compound mutant mice of both DPC4 (Smad4) and Apc genes. Cell 92: 645–656, 1998Google Scholar
  58. 58.
    Cullingworth J, Hooper ML, Harrison DJ, Mason JO, Sirard C, Patek CE, Clarke AR: Carciongen-induced pancreatic lesions in the mouse: Effect of Smad4 and Apc genotypes. Oncogene 21: 4696–4701, 2002Google Scholar
  59. 59.
    Hamamoto T, Beppu H, Okada H, Kawabata M, Kitamura T, Miyazono K, Kato M: Compound disruption of smad2 accelerates malignant progression of intestinal tumors in apc knockout mice. Cancer Res 62: 5955–5961, 2002Google Scholar
  60. 60.
    Takaku K, Wrana JL, E.J. R, Taketo MM: No effects of Smad2 (madh2) null mutation on malignant progression of intestinal polyps in Apc(delta716) knockout mice. Cancer Res 62: 4558–4561, 2002Google Scholar
  61. 61.
    Fischer L, Boland G, Tuan RS: Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J Biol Chem 277: 30870–30878, 2002Google Scholar
  62. 62.
    Kim JS, Crooks H, Dracheva T, Nishanian TG, Singh B, Jen J, Waldman T: Oncogenic beta-catenin is required for bone morphogenetic protein 4 expression in human cancer cells. Cancer Res 62: 2744–2748, 2002Google Scholar
  63. 63.
    Skromne I, Stern CD: Interactions between Wnt and Vg1 signaling pathways initiate primitive streak formation in the chick embryo. Development 128: 2915–2927, 2001Google Scholar
  64. 64.
    Furuhashi M, Yagi K, Yamamoto H, Furukawa Y, Shimada S, Nakamura Y, Kikuchi A, Miyazono K, Kato M: Axin facilitates Smad3 activation in the transforming growth factor β signaling pathway. Mol Cell Biol 21: 5132–5141, 2001Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Liliana Attisano
    • 1
  • Etienne Labbé
    • 2
  1. 1.Department of Biochemistry and Department of Medical BiophysicsUniversity of TorontoTorontoCanada
  2. 2.Department of Medical BiophysicsUniversity of TorontoTorontoCanada

Personalised recommendations