Pharmaceutical Research

, Volume 20, Issue 9, pp 1337–1350 | Cite as

Drug Delivery and Transport to Solid Tumors

  • Seong Hoon Jang
  • M. Guillaume Wientjes
  • Dan Lu
  • Jessie L.-S. Au
Article

Abstract

Purpose. The purpose of this review is to provide an overview of the principles of and barriers to drug transport and delivery to solid tumors.

Methods. This review consists of four parts. Part I provides an overview of the differences in the vasculature in normal and tumor tissues, and the relationship between tumor vasculature and drug transport. Part II describes the determinants of transport of drugs and particles across tumor vasculature into surrounding tumor tissues. Part III discusses the determinants and barriers of drug transport, accumulation, and retention in tumors. Part IV summarizes the experimental approaches used to enhance drug delivery and transport in solid tumors.

Results. Drug delivery to solid tumors consists of multiple processes, including transport via blood vessels, transvascular transport, and transport through interstitial spaces. These processes are dynamic and change with time and tumor properties and are affected by multiple physicochemical factors of a drug, multiple tumor biologic factors, and as a consequence of drug treatments. The biologic factors, in turn, have opposing effects on one or more processes in the delivery of drugs to solid tumors.

Conclusion. The effectiveness of cancer therapy depends in part on adequate delivery of the therapeutic agents to tumor cells. A better understanding of the processes and contribution of these factors governing drug delivery may lead to new cancer therapeutic strategies.

transport drug delivery solid tumors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Jain. Delivery of molecular medicine to solid tumors. Science 271:1079–1080 (1996).Google Scholar
  2. 2.
    E. Harper, W. Dang, R. G. Lapidus, and R. I. Garver, Jr. Enhanced efficacy of a novel controlled release paclitaxel formulation (PACLIMER delivery system) for local–regional therapy of lung cancer tumor nodules in mice. Clin. Cancer Res. 5:4242–4248 (1999).Google Scholar
  3. 3.
    P. A. Vasey, S. B. Kaye, R. Morrison, C. Twelves, P. Wilson, R. Duncan, A. H. Thomson, L. S. Murray, T. E. Hilditch, T. Murray, S. Burtles, D. Fraier, E. Frigerio, and J. Cassidy. Phase I clinical and pharmacokinetic study of PK1 [N–(2–hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents–drug–polymer conjugates. Clin. Cancer Res. 5:83–94 (1999).Google Scholar
  4. 4.
    G. P. Adams. Improving the tumor specificity and retention of antibody–based molecules. In Vivo 12:11–21 (1998).Google Scholar
  5. 5.
    S. R. Schwarze, A. Ho, A. VoceroAkbani, and S. F. Dowdy. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572 (1999).Google Scholar
  6. 6.
    G. Pagnan, D. D. Stuart, F. Pastorino, L. Raffaghello, P. G. Montaldo, T. M. Allen, B. Calabretta, and M. Ponzoni. Delivery of c–myb antisense oligodeoxynucleotides to human neuroblastoma cells via disialoganglioside GD(2)–targeted immunoliposomes: antitumor effects. J. Natl. Cancer Inst. 92:253–261 (2000).Google Scholar
  7. 7.
    J. K. Wolf, G. B. Mills, L. Bazzet, R. C. Bast Jr., J. A. Roth, and D. M. Gershenson. Adenovirus–mediated p53 growth inhibition of ovarian cancer cells is independent of endogenous p53 status. Gynecol. Oncol. 75:261–266 (1999).Google Scholar
  8. 8.
    F. M. Muggia. Doxorubicin–polymer conjugates: further demonstration of the concept of enhanced permeability and retention. Clin. Cancer Res. 5:7–8 (1999).Google Scholar
  9. 9.
    R. K. Jain. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J. Natl. Cancer Inst. 81:570–576 (1989).Google Scholar
  10. 10.
    H. P. Buscher. Defective drug uptake contributing to multidrug resistance in hepatoma cells can be evaluated in vitro. Klin. Wochenschr. 68:443–446 (1990).Google Scholar
  11. 11.
    D. J. Taatjes and T. H. Koch. Nuclear targeting and retention of anthracycline antitumor drugs in sensitive and resistant tumor cells. Curr. Med. Chem. 8:15–29 (2001).Google Scholar
  12. 12.
    K. Maruyama. In vivo targeting by liposomes. Biol. Pharm. Bull. 23:791–799 (2000).Google Scholar
  13. 13.
    L. D. Mayer. Future developments in the specificity of anticancer agents: drug delivery and molecular target. Cancer Metastasis Rev. 17:211–218 (1998).Google Scholar
  14. 14.
    G. Molema, D. K. Meijer, and L. F. de Leij. Tumor vasculature targeted therapies: getting the players organized. Biochem. Pharmacol. 55:1939–1945 (1998).Google Scholar
  15. 15.
    J. Sudimack and R. J. Lee. Targeted drug delivery via the folate receptor. Adv. Drug Del. Rev. 41:147–162 (2000).Google Scholar
  16. 16.
    R. K. Jain. Determinants of tumor blood flow: a review. Cancer Res. 48:2641–2658 (1988).Google Scholar
  17. 17.
    S. A. Skinner, G. M. Frydman, and P. E. O'Brien. Microvascular structure of benign and malignant tumors of the colon in humans. Dig. Dis. Sci. 40:373–384 (1995).Google Scholar
  18. 18.
    J. Folkman. What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82:4–6 (1990).Google Scholar
  19. 19.
    L. A. Liotta, J. Kleinerman, and G. M. Saidel. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 34:997–1004 (1974).Google Scholar
  20. 20.
    J. Folkman. Tumor angiogenesis. In P. M. Mendelsohn, M. A. P. Howley, and L. A. Liotta (eds.), The Molecular Basis of Cancer, W.B. Saunders, Philadelphia, Pennsylvania, 1995 pp. 206–232.Google Scholar
  21. 21.
    P. Shubik. Vascularization of tumors: a review. J. Cancer Res. Clin. Oncol. 103:211–226 (1982).Google Scholar
  22. 22.
    H. Yamaura and H. Sato. Quantitative studies on the developing vascular system of rat hepatoma. J. Natl. Cancer Inst. 53:1229–1240 (1974).Google Scholar
  23. 23.
    P. Rubin and G. Casarett. Microcirculation of tumors. I. Anatomy, function, and necrosis. Clin. Radiol. 17:220–229 (1966).Google Scholar
  24. 24.
    S. Lauk, A. Zietman, S. Skates, R. Fabian, and H. D. Suit. Comparative morphometric study of tumor vasculature in human squamous cell carcinomas and their xenotransplants in athymic nude mice. Cancer Res. 49:4557–4561 (1989).Google Scholar
  25. 25.
    P. Falk. Differences in vascular pattern between the spontaneous and the transplanted C3H mouse mammary carcinomau. Eur. J. Cancer Clin. Oncol. 18:155–165 (1982).Google Scholar
  26. 26.
    M. Leunig, F. Yuan, M. D. Menger, Y. Boucher, A. E. Goetz, K. Messmer, and R. K. Jain. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 52:6553–6560 (1992).Google Scholar
  27. 27.
    Y. Boucher, M. Leunig, and R. K. Jain. Tumor angiogenesis and interstitial hypertension. Cancer Res. 56:4264–4266 (1996).Google Scholar
  28. 28.
    B. Endrich, H. S. Reinhold, J. F. Gross, and M. Intaglietta. Tissue perfusion inhomogeneity during early tumor growth in ratsy. J. Natl. Cancer Inst. 62:387–395 (1979).Google Scholar
  29. 29.
    R. K. Jain and K. A. Ward–Hartley. Tumor blood flow — characterization, modification, and role in hyperthermia. IEEE Trans. Sonics Ultrasonics 31:504–526 (1984).Google Scholar
  30. 30.
    S. A. Skinner, P. J. Tutton, and P. E. O'Brien. Microvascular architecture of experimental colon tumors in the rat. Cancer Res. 50:2411–2417 (1990).Google Scholar
  31. 31.
    I. F. Tannock and G. G. Steel. Quantitative techniques for study of the anatomy and function of small blood vessels in tumors. J. Natl. Cancer Inst. 42:771–782 (1969).Google Scholar
  32. 32.
    L. S. Heuser and F. N. Miller. Differential macromolecular leakage from the vasculature of tumors. Cancer 57:461–464 (1986).Google Scholar
  33. 33.
    K. Hori, M. Suzuki, S. Tanda, and S. Saito. In vivo analysis of tumor vascularization in the rat. Jpn. J. Cancer Res. 81:279–288 (1990).Google Scholar
  34. 34.
    F. Yuan, M. Leunig, S. K. Huang, D. A. Berk, D. Papahadjopoulos, and R. K. Jain. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 54:3352–3356 (1994).Google Scholar
  35. 35.
    F. Yuan, H. A. Salehi, Y. Boucher, U. S. Vasthare, R. F. Tuma, and R. K. Jain. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res. 54:4564–4568 (1994).Google Scholar
  36. 36.
    S. K. Hobbs, W. L. Monsky, F. Yuan, W. G. Roberts, L. Griffith, V. P. Torchilin and R. K. Jain. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95:4607–4612 (1998).Google Scholar
  37. 37.
    M. Bundgaard. Transport pathways in capillaries — in search of pores. Annu. Rev. Physiol. 42:325–336 (1980).Google Scholar
  38. 38.
    N. Simionescu, M. Simionescu, and G. E. Palade. Open junctions in the endothelium of the postcapillary venules of the diaphragm. J. Cell Biol. 79:27–44 (1978).Google Scholar
  39. 39.
    J. C. Firrell, G. P. Lewis, and L. J. Youlten. Vascular permeability to macromolecules in rabbit paw and skeletal muscle: a lymphatic study with a mathematical interpretation of transport processes. Microvasc. Res. 23:294–310 (1982).Google Scholar
  40. 40.
    L. W. Seymour. Passive tumor targeting of soluble macromolecules and drug conjugates. Crit. Rev. Ther. Drug Carrier Syst. 9:135–187 (1992).Google Scholar
  41. 41.
    H. Lum and A. B. Malik. Regulation of vascular endothelial barrier function. Am. J. Physiol. 267:L223–L241 (1994).Google Scholar
  42. 42.
    D. R. Senger, S. J. Galli, A. M. Dvorak, C. A. Perruzzi, V. S. Harvey, and H. F. Dvorak. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985 (1983).Google Scholar
  43. 43.
    P. D. Collins, D. T. Connolly, and T. J. Williams. Characterization of the increase in vascular permeability induced by vascular permeability factor in vivo. Br. J. Pharmacol. 109:195–199 (1993).Google Scholar
  44. 44.
    W. G. Roberts and G. E. Palade. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 108:2369–2379 (1995).Google Scholar
  45. 45.
    D. W. Leung, G. Cachianes, W. J. Kuang, D. V. Goeddel, and N. Ferrara. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309 (1989).Google Scholar
  46. 46.
    M. Dellian, B. P. Witwer, H. A. Salehi, F. Yuan, and R. K. Jain. Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am. J. Pathol. 149:59–71 (1996).Google Scholar
  47. 47.
    H. Maeda, Y. Matsumura, and H. Kato. Purification and identification of [hydroxyprolyl3]bradykinin in ascitic fluid from a patient with gastric cancer. J. Biol. Chem. 263:16051–16054 (1988).Google Scholar
  48. 48.
    Y. Matsumura, M. Kimura, T. Yamamoto, and H. Maeda. Involvement of the kinin–generating cascade in enhanced vascular permeability in tumor tissue. Jpn. J. Cancer Res. 79:1327–1334 (1988).Google Scholar
  49. 49.
    J. Wu, T. Akaike, and H. Maeda. Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res. 58:159–165 (1998).Google Scholar
  50. 50.
    W. Peters, M. Teixeira, M. Intaglietta, and I. F. Gross. Microcirculatory studies in a rat mammary carcinoma. I. Transparent chamber method, development of microvasculature and pressures in tumor vessels. J. Natl. Cancer Inst. 65:631–642 (1980).Google Scholar
  51. 51.
    K. Hori, M. Suzuki, S. Tanda, and S. Saito. Characterization of heterogeneous distribution of tumor blood flow in the rat. Jpn. J. Cancer Res. 82:109–117 (1991).Google Scholar
  52. 52.
    J. Straw, M. Hart, P. Klubes, D. Zaharko, and R. L. Dedrick. Distribution of anticancer agents in spontaneous animal tumors. I. Regional blood flow and methotrexate distribution in canine lymphosarcoma. J. Natl. Cancer Inst. 52:1327–1331 (1974).Google Scholar
  53. 53.
    R. P. Beaney, A. A. Lammertsma, T. Jones, C. G. McKenzie, and K. E. Halnan. In vivo measurements of regional blood flow, oxygen utilization and blood volume in patients with carcinoma of the breast using positron tomography. Lancet 1:131–134 (1984).Google Scholar
  54. 54.
    R. K. Jain. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 50:814s–819s (1990).Google Scholar
  55. 55.
    J. H. Ackerman, C. S. Ewy, N. N. Becker, and R. A. Shalwitz. Deuterium Nuclear Magnetic Resonance Measurements of Blood Flow and Tissue Perfusion Employing 2H2O as a Freely Diffusible Tracer. Proc. Natl. Acad. Sci. USA 84:4099–4102 (1987).Google Scholar
  56. 56.
    J. L. Evelhoch. Measurement of tumor blood flow by deuterium NMR and the effects of modifiers. NMR Biomed. 5:290–295 (1992).Google Scholar
  57. 57.
    L. Bogin, R. Margalit, H. Ristau, J. Mispelter, and H. Degani. Parametric imaging of tumor perfusion with deuterium magnetic resonance imaging. Microvasc. Res. 64:104–115 (2002)Google Scholar
  58. 58.
    S. P. Robinson, F. A. Howe, and J. R. Griffiths. Noninvasive monitoring of carbogen–induced changes in tumor blood flow and oxygenation by functional magnetic resonance imaging. Int. J. Radiat. Oncol. Biol. Phys. 33:855–859 (1995).Google Scholar
  59. 59.
    S. P. Robinson, F. A. Howe, L. M. Rodrigues, M. Stubbs, and J. R. Griffiths. Magnetic resonance imaging techniques for monitoring changes in tumor oxygenation and blood flow. Semin. Radiat. Oncol. 8:197–207 (1998).Google Scholar
  60. 60.
    M. H. Lev and F. Hochberg. Perfusion magnetic imaging to assess brain tumor responses to new therapies. Cancer Control 5:115–123 (1998).Google Scholar
  61. 61.
    T. F. Logan, F. Jadali, M. J. Egorin, M. Mintun, D. Sashin, W. E. Gooding, Y. Choi, H. Bishop, D. L. Trump, D. Gardner, J. Kirkwood, D. Vlock, and C. Johnson. Decreased tumor blood flow as measured by positron emission tomography in cancer patients treated with interleukin–1 and carboplatin on a phase I trial. Cancer Chemother. Pharmacol. 50:433–444 (2002).Google Scholar
  62. 62.
    H. Anderson and P. Price. Clinical measurement of blood flow in tumours using positron emission tomography: a review. Nucl. Med. Commun. 23:131–138 (2002).Google Scholar
  63. 63.
    S. L. Bacharach, S. K. Libutti, and J. A. Carrasquillo. Measuring tumor blood flow with H2 15O: practical considerations. Nucl. Med. Biol. 27:671–676 (2000).Google Scholar
  64. 64.
    P. N. Burns. Interpreting and analyzing the Doppler examination. In K. J. W. Taylor, P. N. Burns, and P. N. T. Wells (eds.), Clinical Applications of Doppler Ultrasound, Raven, New York, 1995, pp. 55–98.Google Scholar
  65. 65.
    P. N. T. Wells. Basic principles and Doppler physics. In K. J. W. Taylor, P. N. Burns, and P. N. T. Wells (eds.), Clinical Applications of Doppler Ultrasound, Raven, New York, 1995, pp. 1–17.Google Scholar
  66. 66.
    D. E. Goertz, J. L. Yu, R. S. Kerbel, P. N. Burns, and F. S. Foster. High–frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow. Cancer Res. 62:6371–6375 (2002).Google Scholar
  67. 67.
    C. Peters–Engl, W. Frank, S. Leodolter, and M. Medl. Tumor flow in malignant breast tumors measured by Doppler ultrasound: an independent predictor of survival. Breast Cancer Res. Treat. 54:65–71 (1999).Google Scholar
  68. 68.
    K. Okihara, H. Watanabe, and M. Kojima. Kinetic study of tumor blood flow in prostatic cancer using power Doppler imaging. Ultrasoud Med. Biol. 25:89–94 (1999).Google Scholar
  69. 69.
    A. Iwamaru, M. Watanabe, S. Yu, T. Ohtsuka, H. Horinouchi, and K. Kobayashi. Measurement of tumor blood flow using colored dye extraction microspheres in two rat tumor models. Int. J. Oncolology 18:227–232 (2001).Google Scholar
  70. 70.
    A. Sckell, N. Safabakhsh, M. Dellian, and R. K. Jain. Primary tumor size–dependent inhibition of angiogenesis at a secondary site: an intravital microscopic study in mice. Cancer Res. 58:5866–5869 (1998).Google Scholar
  71. 71.
    H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65:271–284 (2000).Google Scholar
  72. 72.
    C. M. O'Driscoll. Anatomy and physiology of the lymphatics. In W. N. Charman and V. J. Stella (eds.), Lymphatic Transport of Drugs, CRC Press, Boca Raton, Florida, 1992, pp. 1–36.Google Scholar
  73. 73.
    R. K. Jain. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 6:559–593 (1987).Google Scholar
  74. 74.
    D. C. Drummond, O. Meyer, K. Hong, D. B. Kirpotin, and D. Papahadjopoulos. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev. 51:691–743 (1999).Google Scholar
  75. 75.
    Y. Matsumura and H. Maeda. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46:6387–6392 (1986).Google Scholar
  76. 76.
    K. Iwai, H. Maeda, and T. Konno. Use of oily contrast medium for selective drug targeting to tumor: enhanced therapeutic effect and X–ray image. Cancer Res. 44:2115–2121 (1984).Google Scholar
  77. 77.
    Y. Noguchi, J. Wu, R. Duncan, J. Strohalm, K. Ulbrich, T. Akaike, and H. Maeda. Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn. J. Cancer Res. 89:307–314 (1998).Google Scholar
  78. 78.
    F. M. Muggia. Doxorubicin–polymer conjugates: further demonstration of the concept of enhanced permeability and retention. Clin. Cancer Res. 5:7–8 (1999).Google Scholar
  79. 79.
    L. W. Seymour, K. Ulbrich, P. S. Steyger, M. Brereton, V. Subr, J. Strohalm, and R. Duncan. Tumour tropism and anti–cancer efficacy of polymer–based doxorubicin prodrugs in the treatment of subcutaneous murine B16F10 melanoma. Br. J. Cancer 70:636–641 (1994).Google Scholar
  80. 80.
    H. Maeda. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor–selective macromolecular drug targeting. Adv. Enzyme Regul. 41:189–207 (2001).Google Scholar
  81. 81.
    H. Maeda. SMANCS and polymer–conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv. Drug Deliv. Rev. 46:169–185 (2001).Google Scholar
  82. 82.
    H. Sinn, H. H. Schrenk, E. A. Friedrich, U. Schilling, and W. Maier–Borst. Design of compounds having an enhanced tumour uptake, using serum albumin as a carrier. Part I. Int. J. Rad. Appl. Instrum. 17:819–827 (1990).Google Scholar
  83. 83.
    N. Z. Wu, D. Da, T. L. Rudoll, D. Needham, A. R. Whorton, and M. W. Dewhirst. Increased microvascular permeability contributes to preferential accumulation of Stealth liposomes in tumor tissue. Cancer Res. 53:3765–3770 (1993).Google Scholar
  84. 84.
    D. W. Northfelt, F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan. Doxorubicin encapsulated in liposomes containing surface–bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS–related Kaposi's sarcoma. J. Clin. Pharamcol. 36:55–63 (1996).Google Scholar
  85. 85.
    R. K. Jain. Transport of molecules in the tumor interstitium: a review. Cancer Res. 47:3039–3051 (1987).Google Scholar
  86. 86.
    Y. Boucher and R. K. Jain. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 52:5110–5114 (1992).Google Scholar
  87. 87.
    L. T. Baxter and R. K. Jain. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Microvasc. Res. 37:77–104 (1989).Google Scholar
  88. 88.
    R. Duncan and Y. N. Sat. Tumor targeting by enhanced permeability and retention (EPR) effect. Ann. Oncol. 9:39(1998).Google Scholar
  89. 89.
    R. K. Jain. Transport phenomena in tumors. Adv. Chem. Eng. 19:129–200 (1994).Google Scholar
  90. 90.
    J. R. Less, T. C. Skalak, E. M. Sevick, and R. K. Jain. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res. 51:265–273 (1991).Google Scholar
  91. 91.
    H. K. Awwad, M. el Naggar, N. Mocktar, and M. Barsoum. Intercapillary distance measurement as an indicator of hypoxia in carcinoma of the cervix uteri. Int. J. Radiation Oncology Biol. Phys. 12:1329–1333 (1986).Google Scholar
  92. 92.
    P. Vaupel. Hypoxia in neoplastic tissue. Microvas. Res. 13:399–408 (1977).Google Scholar
  93. 93.
    T. Sasaki, M. Yamamoto, T. Yamaguchi, and S. Sugiyama. Development of multicellular spheroids of HeLa cells cocultured with fibroblasts and their response to X–irradiation. Cancer Res. 44:345–351 (1984).Google Scholar
  94. 94.
    R. M. Sutherland and R. E. Durand. Radiation response of multicell spheroids–an in vitro tumour model. Curr. Top. Radiat. Res. 11:87–139 (1976).Google Scholar
  95. 95.
    R. E. Durand. Variable radiobiological responses of spheroids. Radiat. Res. 81:85–99 (1980).Google Scholar
  96. 96.
    R. E. Durand. Chemosensitivity testing in V79 spheroids: drug delivery and cellular microenvironment. J. Natl. Cancer Inst. 77:247–252 (1986).Google Scholar
  97. 97.
    J. Carlsson, K. Nilsson, B. Westermark, J. Ponten, C. Sundstrom, E. Larsson, J. Bergh, S. Pahlman, C. Busch, and V. P. Collins. Formation and growth of multicellular spheroids of human origin. Int. J. Cancer 31:523–533 1983).Google Scholar
  98. 98.
    T. Nederman, B. Norling, B. Glimelius, J. Carlsson, and U. Brunk. Demonstration of an extracellular matrix in multicellular tumor spheroids. Cancer Res. 44:3090–3097 (1984).Google Scholar
  99. 99.
    T. Nederman and J. Carlsson. Penetration and binding of vinblastine and 5–fluorouracil in cellular spheroids. Cancer Chemother. Pharmacol. 13:131–135 (1984).Google Scholar
  100. 100.
    T. Nederman, J. Carlsson, and K. Kuoppa. Penetration of substances into tumour tissue. Model studies using saccharides, thymidine and thymidine–5′–triphosphate in cellular spheroids. Cancer Chemother. Pharmacol. 22:21–25 (1988).Google Scholar
  101. 101.
    C. Erlichman and D. Vidgen. Cytotoxicity of adriamycin in MGH–U1 cells grown as monolayer cultures, spheroids, and xenografts in immune–deprived mice. Cancer Res. 44:5369–5375 (1984).Google Scholar
  102. 102.
    M. Erlanson, E. Daniel–Szolgay, and J. Carlsson. Relations between the penetration, binding and average concentration of cytostatic drugs in human tumour spheroids. Cancer Chemother. Pharmacol. 29:343–353 (1992).Google Scholar
  103. 103.
    R. E. Durand. Slow penetration of anthracyclines into spheroids and tumors: a therapeutic advantage? Cancer Chemother. Pharmacol. 26:198–204 (1990).Google Scholar
  104. 104.
    G. W. West, R. Weichselbaum, and J. B. Little. Limited penetration of methotrexate into human osteosarcoma spheroids as a proposed model for solid tumor resistance to adjuvant chemotherapy. Cancer Res. 40:3665–3668 (1980).Google Scholar
  105. 105.
    K. M. Nicholson, M. C. Bibby, and R. M. Phillips. Influence of drug exposure parameters on the activity of paclitaxel in multicellular spheroids. Eur. J. Cancer 33:1291–1298 (1997).Google Scholar
  106. 106.
    P. M. Gullino and F. H. Grantham. The influence of the host and the neoplastic cell population on the collagen content of a tumor mass. Cancer Res. 23:648–653 (1963).Google Scholar
  107. 107.
    C. P. Winlove and K. H. Parker. The physiological function of the extracellular matrix. In R. K. Reed, G. A. Laine, J. L. Bert, C. P. Winlove, and N. McHale (eds.), Interstitium, Connective Tissue and Lymphatics, Portland Press, London, 1995, pp. 137–165.Google Scholar
  108. 108.
    L. A. Liotta and C. N. Rao. Role of the extracellular matrix in cancer. Ann. NY Acad. Sci. 460:333–344 (1985).Google Scholar
  109. 109.
    K. Aukland and G. Nicolaysen. Interstitial fluid volume: local regulatory mechanisms. Physiol. Rev. 61:556–643 (1981).Google Scholar
  110. 110.
    G. W. Jackson and D. F. James. The hydrodynamic resistance of hyaluronic acid and its contribution to tissue permeability. Biorheology 19:317–330 (1982).Google Scholar
  111. 111.
    J. R. Levick. Relation between hydraulic resistance and composition of the interstitium. In N. C. Staub, J. C. Hogg, and A. R. Hargens (eds.), Interstitial–Lymphatic Liquid and Solute Movement, Karger, New York, 1987, pp. 124–133.Google Scholar
  112. 112.
    R. H. Pearce. Glycosaminoglycans and glycoproteins in skin. In E. A. Balazs and R. W. Jeanloz (eds.), The Amino Sugars, Academic Press, New York, 1965, pp. 149–193.Google Scholar
  113. 113.
    Z. Brada. Host–tumor relationship. XX. The hexosamine content and the tumor as a marker of relation between the tumor stroma and tumor cells. Neoplasma (Bratisl) 12:373–378 (1965).Google Scholar
  114. 114.
    B. Sylven. Amino–sugar containing compounds in tumors. In E. A. Balazs and R. W. Jeanloz (eds.), The Amino Sugars, Academic Press, New York, 1965, pp. 195–204.Google Scholar
  115. 115.
    P. A. Netti, D. A. Berk, M. A. Swartz, A. J. Grodzinsky, and R. K. Jain. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60:2497–2503 (2000).Google Scholar
  116. 116.
    A. Pluen, S. Ramanujan, Y. Boucher, E. Unemori, B. Seed, and R. K. Jain. Relaxin increases the transport of large molecules in high collagen content tumors. Proc. Am. Assoc. Cancer Res. 38:604(2000).Google Scholar
  117. 117.
    J. R. Fox and H. Wayland. Interstitial diffusion of macromolecules in the rat mesentery. Microvasc. Res. 18:255–276 (1979).Google Scholar
  118. 118.
    J. S. Schultz and W. Armstrong. Permeability of interstitial space of muscle (rat diaphragm) to solutes of different molecular weights. J. Pharm. Sci. 67:696–700 (1978).Google Scholar
  119. 119.
    H. J. Kuh, S. H. Jang, M. G. Wientjes, J. R. Weaver, and J. L.–S. Au. Determinants of paclitaxel penetration and accumulation in human solid tumor. J. Pharmacol. Exp. Ther. 290:871–880 (1999).Google Scholar
  120. 120.
    S. H. Jang, M. G. Wientjes, and J. L.–S. Au. Enhancement of paclitaxel delivery to solid tumors by apoptosis–inducing pretreatment: Effect of treatment schedule. J. Pharmacol. Exp. Ther. 296:1035–1042 (2001).Google Scholar
  121. 121.
    J. H. Zheng, C. T. Chen, J. L.–S. Au, and M. G. Wientjes. Time–and concentration–dependent penetration of doxorubicin in prostate tumors. AAPS PharmSci. 3:article 15(2001) (http://www.pharmsci.org/journal)Google Scholar
  122. 122.
    K. T. Robbins, K. M. Connors, A. M. Storniolo, C. Hanchett, and R. M. Hoffman. Sponge–gel–supported histoculture drug–response assay for head and neck cancer. Arch. Otolaryngol. Head Neck Surg. 120:288–292 (1994).Google Scholar
  123. 123.
    T. Furukawa, T. Kubota, and R. M. Hoffman. The clinical applications of the histoculture drug response assay. Clin. Cancer Res. 1:305–311 (1995).Google Scholar
  124. 124.
    R. S. Kerbel. Tumor angiogenesis: past, present and the near future. Carcinogenesis 21:505–515 (2000).Google Scholar
  125. 125.
    J. L.–S. Au, N. Panchal, D. Li, and Y. Gan. Apoptosis: a new pharmacodynamic endpoint. Pharm. Res. 14:1659–1671 (1997)Google Scholar
  126. 126.
    J. L.–S. Au, D. Li, Y. Gan, X. Gao, A. L. Johnson, J. Johnston, N. J. Millenbaugh, S. H. Jang, H. J. Kuh, C. T. Chen, and M. G. Wientjes. Pharmacodynamics of immediate and delayed effects of paclitaxel: role of slow apoptosis and intracellular drug retention. Cancer Res. 58:2141–2148 (1998).Google Scholar
  127. 127.
    L. Cheng, S. Zheng, K. Raghunathan, D. G. Priest, M. C. Willingham, J. S. Norris, and W. Fan. Characterisations of taxol–induced apoptosis and altered gene expression in human breast cancer cells. Cell. Pharmacol. 2:249–257 (1995).Google Scholar
  128. 128.
    L. Milas, N. R. Hunter, B. Kurdoglu, K. A. Mason, R. E. Meyn, L. C. Stephens, and L. J. Peters. Kinetics of mitotic arrest and apoptosis in murine mammary and ovarian tumors treated with taxol. Cancer Chemother. Pharmacol. 35:297–303 (1995).Google Scholar
  129. 129.
    D. E. Saunders, W. D. Lawrence, C. Christensen, N. L. Wappler, H. Ruan, and G. Deppe. Paclitaxel–induced apoptosis in MCF7 breast cancer cells. Int. J. Cancer 70:214–220 (1997).Google Scholar
  130. 130.
    Y. Gan, M. G. Wientjes, D. E. Schuller, and J. L.–S. Au. Pharmacodynamics of taxol in human head and neck tumors. Cancer Res. 56:2086–2093 (1996).Google Scholar
  131. 131.
    J. L.–S. Au, R. R. Kumar, D. Li, and M. G. Wientjes. Kinetics of hallmark biochemical changes in paclitaxel–induced apoptosis. AAPS PharmSci. 1:article 8. (1999) (http://www.pharmsci.org/journal)Google Scholar
  132. 132.
    C. T. Chen, J. L.–S. Au, and M. G. Wientjes. Pharmacodynamics of doxorubicin in human prostate tumors. Clin. Cancer Res. 4:227–282 (1998).Google Scholar
  133. 133.
    P. Nicotera, M. Leist, and E. Ferrando–May. Apoptosis and necrosis: different execution of the same death. Biochem. Soc. Symp. 66:69–73 (1999).Google Scholar
  134. 134.
    D. Kanduc, A. Mittelman, R. Serpico, E. Sinigaglia, A. Sinha, C. Natale, R. Santacroce, C. Di, A. Lucchese, L. Dini, P. Pani, S. Santacroce, S. Simone, R. Bucci, and E. Farber. Cell death: Apoptosis versus necrosis (Review). Int. J. Oncology 21:165–170 (2002).Google Scholar
  135. 135.
    S. Kinuya, K. Yokoyama, T. Hiramatsu, H. Tega, K. Tanaka, S. Konishi, N. Shuke, T. Aburano, N. Watanabe, T. Takayama, T. Michigishi, and N. Tonami. Combination radioimmunotherapy with local hyperthermia: increased delivery of radioimmunoconjugate by vascular effect and its retention by increased antigen expression in colon cancer xenografts. Cancer Lett. 140:209–218 (1999).Google Scholar
  136. 136.
    J. M. Schuster, M. R. Zalutsky, M. A. Noska, R. Dodge, H. S. Friedman, D. D. Bigner, and M. W. Dewhirst. Hyperthermic modulation of radiolabelled antibody uptake in a human glioma xenograft and normal tissues. Int. J. Hyperthermia 11:59–72 (1995).Google Scholar
  137. 137.
    R. B. Wilder, V. K. Langmuir, H. L. Mendonca, M. L. Goris, and S. J. Knox. Local hyperthermia and SR 4233 enhance the antitumor effects of radioimmunotherapy in nude mice with human colonic adenocarcinoma xenografts. Cancer Res. 53:3022–3027 (1993).Google Scholar
  138. 138.
    D. S. Gridley, K. L. Ewart, J. D. Cao, and D. R. Stickney. Hyperthermia enhances localization of 111In–labeled hapten to bifunctional antibody in human colon tumor xenografts. Cancer Res. 51:1515–1520 (1991).Google Scholar
  139. 139.
    D. A. Cope, M. W. Dewhirst, H. S. Friedman, D. D. Bigner, and M. R. Zalutsky. Enhanced delivery of a monoclonal antibody F(ab')2 fragment to subcutaneous human glioma xenografts using local hyperthermia. Cancer Res. 50:1803–1809 (1990).Google Scholar
  140. 140.
    B. B. Mittal, M. A. Zimmer, V. Sathiaseelan, A. B. Benson iii, R. R. Mittal, S. Dutta, S. T. Rosen, S. M. Spies, J. M. Mettler, and M. W. Groch. Phase I/II trial of combined 131I anti–CEA monoclonal antibody and hyperthermia in patients with advanced colorectal adenocarcinoma. Cancer 78:1861–1870 (1996).Google Scholar
  141. 141.
    B. Endrich and F. Hammersen. Morphologic and hemodynamic alterations in capillaries during hyperthermia. In L. J. Anghileri and J. Robert (eds.), >Hyperthermia in Cancer Treatment, CRC Press, Boca Raton, Florida, 1986 pp. 17–47.Google Scholar
  142. 142.
    M. Suzuki, K. Hori, I. Abe, S. Saito, and H. Sato. A new approach to cancer chemotherapy: selective enhancement of tumor blood flow with angiotensin II. J. Natl. Cancer Inst. 67:663–669 (1981).Google Scholar
  143. 143.
    M. J. Trotter, D. J. Chaplin, and P. L. Olive. Effect of angiotensin II on intermittent tumour blood flow and acute hypoxia in the murine SCCVII carcinoma. Eur. J. Cancer 27:887–893 (1991).Google Scholar
  144. 144.
    R. F. Edlich, W. Rogers, C. V. DeShazo Jr., and J. B. Aust. Effect of vasoactive drugs on tissue blood flow in the hamster melanoma. Cancer Res. 26:1420–1424 (1966).Google Scholar
  145. 145.
    K. Hori, Q. H. Zhang, S. Saito, S. Tanda, H. C. Li, and M. Suzuki. Microvascular mechanisms of change in tumor blood flow due to angiotensin II, epinephrine, and methoxamine: a functional morphometric study. Cancer Res. 53:5528–5534 (1993).Google Scholar
  146. 146.
    I. Abe, K. Hori, S. Saito, S. Tanda, Y. L. Li, and M. Suzuki. Increased intratumor concentration of fluorescein–isothiocyanate–labeled neocarzinostatin in rats under angiotensin–induced hypertension. Jpn. J. Cancer Res. 79:874–879 (1988).Google Scholar
  147. 147.
    S. A. Al–Merani, D. P. Brooks, B. J. Chapman, and K. A. Munday. The half–lives of angiotensin II, angiotensin II–amide, angiotensin III, Sar1–Ala8–angiotensin II and renin in the circulatory system of the rats. J. Phyasiol. 278:471–490 (1978).Google Scholar
  148. 148.
    B. J. Chapman, D. P. Brooks, and K. A. Munday. Half–life of angiotensin II in the conscious and barbiturate–anaesthetized rat. Br. J. Anaesth. 52:389–393 (1980).Google Scholar
  149. 149.
    H. Sato, M. Urushiyama, K. Sugiyama, K. Ishizuka, M. Hoshi, and A. Wakui. Dose intensity and clinical response in patients with advanced gastric carcinoma treated by induced hypertension chemotherapy. Gan To Kagaku Ryoho 17:564–569 (1990).Google Scholar
  150. 150.
    H. Sato, A. Wakui, M. Hoshi, M. Kurihara, M. Yokoyama, and H. Shimizu. Randomized controlled trial of induced hypertension chemotherapy (IHC) using angiotensin II human (TY–10721) in advanced gastric carcinoma (TY–10721 IHC Study Group Report). Gan To Kagaku Ryoho 18:451–460 (1991).Google Scholar
  151. 151.
    M. Nakamura, T. Takahashi, H. Sato, M. Hoshi, A. Wakui, and R. Kanamaru. Histopathological evaluation on the effect of induced hypertension chemotherapy presurgically performed in patients with advanced carcinoma of the stomach. Tohoku J. Exp. Med. 167:27–37 (1992).Google Scholar
  152. 152.
    Z. Zhuand L. Witte. Inhibition of tumor growth and metastasis by targeting tumor–associated angiogenesis with antagonists to the receptors of vascular endothelial growth factor. Invest. New Drugs 17:195–212 (1999).Google Scholar
  153. 153.
    A. Saaristo, T. Karpanen, and K. Alitalo. Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis. Oncogene 19:6122–6129 (2000).Google Scholar
  154. 154.
    S. Song, M. G. Wientjes, Y. Gan, and J. L.–S. Au. Fibroblast growth factors: an epigenetic mechanism of broad spectrum resistance to anticancer drugs. Proc. Natl. Acad. Sci. USA 97:8658–8663 (2000).Google Scholar
  155. 155.
    S. Song, M. G. Wientjes, C. Walsh, and J. L.–S. Au. Nontoxic doses of suramin enhance activity of paclitaxel against lung metastases. Cancer Res. 61:6145–6150 (2001).Google Scholar
  156. 156.
    Y. Zhang, S. Song, F. Yang, J. L.–S. Au, and M. G. Wientjes. Nontoxic doses of suramin enhance activity of doxorubicin in prostate tumors. J. Pharmacol. Exp. Ther. 299:426–433 (2001).Google Scholar
  157. 157.
    R. K. Jain. Delivery of molecular and cellular medicine to solid tumors. J. Control. Release 53:49–67 (1998).Google Scholar
  158. 158.
    P. A. Netti, L. M. Hamberg, J. W. Babich, D. Kierstead, W. Graham, G. J. Hunter, G. L. Wolf, A. Fischman, Y. Boucher, and R. K. Jain. Enhancement of fluid filtration across tumor vessels: implication for delivery of macromolecules. Proc. Natl. Acad. Sci. USA 96:3137–3142 (1999).Google Scholar
  159. 159.
    G. Griffon–Etienne, Y. Boucher, C. Brekken, H. D. Suit, and R. K. Jain. Taxane–induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res. 59:3776–3782 (1999).Google Scholar
  160. 160.
    K. Hori, M. Suzuki, S. Saito, S. Tanda, Q. H. Zhang, and H. C. Li. Changes in vessel pressure and interstitial fluid pressure of normal subcutis and subcutaneous tumor in rats due to angiotensin II. Microvasc. Res. 48:246–256 (1994).Google Scholar
  161. 161.
    R. A. Zlotecki, Y. Boucher, I. Lee, L. T. Baxter, and R. K. Jain. Effect of angiotensin II induced hypertension on tumor blood flow and interstitial fluid pressure. Cancer Res. 53:2466–2468 (1993).Google Scholar
  162. 162.
    R. A. Zlotecki, L. T. Baxter, Y. Boucher, and R. K. Jain. Pharmacologic modification of tumor blood flow and interstitial fluid pressure in a human tumor xenograft: network analysis and mechanistic interpretation. Microvasc. Res. 50:429–443 (1995).Google Scholar
  163. 163.
    M. Markman, J. Hall, D. Spitz, S. Weiner, L. Carson, L. Van Le, and M. Baker. Phase II trial of weekly single–agent paclitaxel in platinum/paclitaxel–refractory ovarian cancer. J. Clin. Oncol. 20:2365–2369 (2002).Google Scholar
  164. 164.
    D. Ranney, P. Antich, J. Cohen, W. Erdman, P. Kulkarni, and B. Giovanella. Submillimeter monitoring of tumor–treatment response by contrast–enhanced magnetic resonance imaging (MRI): Implications for tumor access of antibodies lymphokines and macromolecular drugs. Proc. Am. Assoc. Cancer Res. 29:495(1988).Google Scholar
  165. 165.
    D. F. Ranney. Biomimetic transport and rational drug delivery. Biochem. Pharmacol. 59:105–114 (2000).Google Scholar
  166. 166.
    R. K. Jain. Understanding barriers to drug delivery: high resolution in vivo imaging is key. Clin. Cancer Res. 5:1605–1606 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Seong Hoon Jang
    • 1
  • M. Guillaume Wientjes
    • 1
  • Dan Lu
    • 1
  • Jessie L.-S. Au
    • 1
    • 2
  1. 1.College of PharmacyThe Ohio State UniversityColumbus
  2. 2.Office of Clinical Pharmacology and BiopharmaceuticsCenter for Drug Evaluation and Research, Food and Drug AdministrationRockville

Personalised recommendations