Advertisement

General Relativity and Gravitation

, Volume 35, Issue 9, pp 1637–1658 | Cite as

Spinors, Inflation, and Non-Singular Cyclic Cosmologies

  • C. Armendáriz-Picón
  • Patrick B. Greene
Article

Abstract

We consider toy cosmological models in which a classical, homogeneous, spinor field provides a dominant or sub-dominant contribution to the energy-momentum tensor of a flat Friedmann-Robertson-Walker universe. We find that, if such a field were to exist, appropriate choices of the spinor self-interaction would generate a rich variety of behaviors, quite different from their widely studied scalar field counterparts. We first discuss solutions that incorporate a stage of cosmic inflation and estimate the primordial spectrum of density perturbations seeded during such a stage. Inflation driven by a spinor field turns out to be unappealing as it leads to a blue spectrum of perturbations and requires considerable fine-tuning of parameters. We next find that, for simple, quartic spinor self-interactions, non-singular cyclic cosmologies exist with reasonable parameter choices. These solutions might eventually be incorporated into a successful past- and future-eternal cosmological model free of singularities. In an Appendix, we discuss the classical treatment of spinors and argue that certain quantum systems might be approximated in terms of such fields.

Cosmology spinor field inflation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Linde, A. (1990). Inflationary Cosmology and Particle Physics, Harwood, Chur, Switzerland.Google Scholar
  2. [2]
    Taub, A. (1937). Phys. Rev. 51, 512.Google Scholar
  3. [3]
    Brill, D., and Wheeler, J. (1957). Rev. Mod. Phys. 29, 465.Google Scholar
  4. [4]
    Parker, L. (1971). Phys. Rev. D 3, 346.Google Scholar
  5. [5]
    Isham, C., and Nelson, J. (1974). Phys. Rev. D 10, 3226.Google Scholar
  6. [6]
    Christodoulakis, T., and Zanelli, J. (1984). Phys. Rev. D 29, 2738.Google Scholar
  7. [7]
    Kovalyov, M., and Legare, M. (1990). J. Math. Phys. 31, 191.Google Scholar
  8. [8]
    Saha, B., and Shikin, G. (2001). (gr-qc/0102059)Google Scholar
  9. [9]
    Saha, B., and Shikin, G. (1997). J. Math. Phys. 38, 5305(gr-qc/9609055)Google Scholar
  10. [10]
    Saha, B., and Shikin, G. (1997). Gen. Relat. Grav. 29, 1099(gr-qc/9609056).Google Scholar
  11. [11]
    Weinberg, S. (1972). Gravitation and Cosmology, Cambridge University Press, Cambridge, UK.Google Scholar
  12. [12]
    Birrell, N., and Davies, P. (1982). Quantum Fields in Curved Space, Cambridge University Press, Cambridge, UK.Google Scholar
  13. [13]
    Green, M., Schwarz, J., and Witten, E. (1987). Superstring Theory, Vol. 2, Cambridge University Press, Chap. 12.Google Scholar
  14. [14]
    Carroll, S. (1998). Phys. Rev. Lett. 81, 3067(astro-ph/9806099).Google Scholar
  15. [15]
    Damour, T., and Polyakov, A. (1994). Nucl. Phys. B 423, 532(hep-th/9401069).Google Scholar
  16. [16]
    Sievers, J., et al. (astro-ph/0205387).Google Scholar
  17. [17]
    Wald, R. (1984). General Relativity, The University of Chicago Press, Chicago, IL.Google Scholar
  18. [18]
    Armendariz-Picon, C., Damour, T., and Mukhanov, V. (1999). Phys. Lett. B 458, 209(hep-th/9904075)Google Scholar
  19. [19]
    Armendariz-Picon, C., Mukhanov, V., and Steinhardt, P. (2001). Phys. Rev. D 63, 103510(astro-ph/0006373)Google Scholar
  20. [20]
    Armendariz-Picon, C. (2002). Phys. Rev. D. 65, 104010(gr-qc/0201027).Google Scholar
  21. [21]
    Hollands, S., and Wald, R. (2002). Gen. Relat. Grav. 34, 2043(gr-qc/0205058)Google Scholar
  22. [22]
    Kofman, L., Linde, A., and Mukhanov, V. (hep-th/0206088)Google Scholar
  23. [23]
    Hollands, S., and Wald, R. (hep-th/0210001).Google Scholar
  24. [24]
    Ford, L. (1989). Phys. Rev. D 40, 967.Google Scholar
  25. [25]
    Obukhov, Y. (1993). Phys. Lett. A 182, 214(gr-qc/0008015).Google Scholar
  26. [26]
    Kofman, L., Linde, A., and Starobinsky, A. (1997). Phys. Rev. D 56, 3258(hep-ph/9704452).Google Scholar
  27. [27]
    Greene, P. B., and Kofman, L. (1999). Phys. Lett. B 448, 6(hep-ph/9807339).Google Scholar
  28. [28]
    Damour, T., and Vilenkin, A. (1996). Phys. Rev. D 53, 2981(hep-th/9503149).Google Scholar
  29. [29]
    Felder, G., Kofman, L., and Linde, A. (1999). Phys. Rev. D 60, 103505(hep-ph/9903350).Google Scholar
  30. [30]
    Mukhanov, V., Feldman, H., and Brandenberger, R. (1992). Phys. Rep. 215, 204.Google Scholar
  31. [31]
    Peshkin, M., and Schroeder, D. (1995). An Introduction to Quantum Field Theory, Perseus Books.Google Scholar
  32. [32]
    Abramowitz, M., and Stegun, I. (1965). Handbook of Mathematical Functions, Dover Publications, New York.Google Scholar
  33. [33]
    Mollerach, S. (1990). Phys. Rev. D 42, 313Google Scholar
  34. [34]
    Linde, A., and Mukhanov, V. (1997). Phys. Rev. D 56, 535(astro-ph/9610219)Google Scholar
  35. [35]
    Moroi, T., and Takahashi, T. (2001). Phys. Lett. B 522, 215(hep-ph/0110096).Google Scholar
  36. [36]
    Lyth, D., and Wands, D. (2002). Phys. Lett. B 524, 5(hep-ph/0110002).Google Scholar
  37. [37]
    Tolman, R. (1934). Relativity, Thermodynamics and Cosmology, Clarendon Press, Oxford.Google Scholar
  38. [38]
    Barrow, J., and Dabrowski, M. (1995). Mon. Not. R. Astron. 275, 860.Google Scholar
  39. [39]
    Steinhardt, P., and Turok, N. (2002). Phys. Rev. D 65, 126003(hep-th/0111098).Google Scholar
  40. [40]
    Felder, G. N., Frolov, A. V., Kofman, L., and Linde, A. V. (2002). Phys. Rev. D 66, 023507(hep-th/0202017).Google Scholar
  41. [41]
    Mukherji, S., and Peloso, M. (hep-th/0205180)Google Scholar
  42. [42]
    Myung, Y. (hep-th/0208086).Google Scholar
  43. [43]
    Hatfield, B. (1992). Quantum Field Theory of Point Particles and Strings, Addison-Wesley, Reading, MA.Google Scholar
  44. [44]
    Bardeen, J., Cooper, L., and Schrieffer, J. (1957). Phys. Rev. 108, 1175.Google Scholar
  45. [45]
    Nambu, Y., and Jona-Lasinio, G. (1961). Phys. Rev. 122, 345.Google Scholar
  46. [46]
    Gross, D., and Neveu, A. (1974). Phys. Rev. D 10, 3235.Google Scholar
  47. [47]
    Hill, C., and Salopek, D. (1992). Annals Phys. 213, 21.Google Scholar
  48. [48]
    Chimento, L., Jalcubi, A., and Pensa, F. (1990). Class. Quantum Grav. 7, 1561.Google Scholar
  49. [49]
    Kanekar, N., Sahni, V., and Shtanov, Y. (2001). Phys. Rev. D 63, 083520.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • C. Armendáriz-Picón
    • 1
  • Patrick B. Greene
    • 2
  1. 1.Enrico Fermi Institute, Department of Astronomy and AstrophysicsUniversity of ChicagoUSA
  2. 2.Fermi National Accelerator LaboratoryNASA/Fermilab Astrophysics GroupBataviaUSA

Personalised recommendations