The Case for an Error Minimizing Standard Genetic Code

Article

Abstract

Since discovering the pattern by which amino acids are assigned to codons within the standard genetic code, investigators have explored the idea that natural selection placed biochemically similar amino acids near to one another in coding space so as to minimize the impact of mutations and/or mistranslations. The analytical evidence to support this theory has grown in sophistication and strength over the years, and counterclaims questioning its plausibility and quantitative support have yet to transcend some significant weaknesses in their approach. These weaknesses are illustrated here by means of a simple simulation model for adaptive genetic code evolution. There remain ill explored facets of the `error minimizing' code hypothesis, however, including the mechanism and pathway by which an adaptive pattern of codon assignments emerged, the extent to which natural selection created synonym redundancy, its role in shaping the amino acid and nucleotide languages, and even the correct interpretation of the adaptive codon assignment pattern: these represent fertile areas for future research.

adaptation error minimization evolution Genetic Code natural selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aita, T., Urata, S. and Husimi, Y.: 2000, From Amino Acid Landscape to Protein Landscape: Analysis of Genetic Codes in Terms of Fitness Landscape, J. Mol. Evol. 50, 313-323.Google Scholar
  2. Alff-Steinberger, C.: 1969, The Genetic Code and Error Transmission, Proc. Natl. Acad. Sci. USA 64, 584-591.Google Scholar
  3. Amirnovin, R.: 1997, An Analysis of the Metabolic Theory of the Origin of the Genetic Code, J. Mol. Evol. 44, 473-476.Google Scholar
  4. Amirnovin, R. and Miller, S. L.: 1999, Response, J. Mol. Evol. 48, 253-255.Google Scholar
  5. Ardell, D. H.: 1998, On error Minimization in a Sequential Origin of the Standard Genetic Code, J. Mol. Evol. 47, 1-13.Google Scholar
  6. Ardell, D. and Sella, G.: 2001, On the Evolution of Redundancy in Genetic Codes, J. Mol. Evol. 53, 269-281.Google Scholar
  7. Barrell, B. G., Bankier, A. T. and Drouin, J.: 1979, A Different Genetic Code in Human Mitochondria, Nature 282, 189-194.Google Scholar
  8. Bashford, J. D., Tsohantjis, I. and Jarvis, P. D.: 1998, A Supersymmetric Model for the Evolution of the Genetic Code, Proc. Natl. Acad. Sci. USA 95, 987-992.Google Scholar
  9. Baumann, U. and Oro, J.: 1993, Three Stages in the Evolution of the Genetic Code, Biosystems 29, 133-141.Google Scholar
  10. Crick, F. H. C.: 1966, Codon-Anticodon Pairing: TheWobble Hypothesis, J. Mol. Biol. 19, 548-555.Google Scholar
  11. Crick, F. H. C.: 1968, The Origin of the Genetic Code, J. Mol. Biol. 38, 367-379.Google Scholar
  12. Crick, F. H. C., Griffith, J. S. and Orgel, L. E.: 1957, Codes Without Commas, Proc. Natl. Acad. Sci. USA 43, 416-421.Google Scholar
  13. Cullman, G. and Labouygues, J.: 1983, Noise Immunity of the Genetic Code, Bio Systems 16, 9-29.Google Scholar
  14. Cullman, G. and Labouygues, J.: 1987, The Logic of the Genetic Code, Math. Model 8, 643-646.Google Scholar
  15. Davies, J., Gilbert, W. and Gorini, L.: 1964, Streptomycin, Suppression and the Code, Proc. Natl. Acad. Sci. USA 51, 883-890.Google Scholar
  16. Davis, B. K.: 1999, Evolution of the Genetic Code, Progr. Biophys. Molec. Biol. 72, 157-243.Google Scholar
  17. Davydov, O.: 1996, Internal Logic of the Genetic Encoding: End-atom Rules of Doublet Composition, ISSOL Newsletter 23, 12.Google Scholar
  18. Davydov, O. V.: 1998, Amino Acid Contribution to the Genetic Code Structure: End-atom Chemical Rules of Doublet Composition, J. Theor. Biol. 193, 679-690.Google Scholar
  19. Di Giulio, M.: 1989, The Extension Reached by the Minimisation of Polarity Distances During the Evolution of the Genetic Code, J. Mol. Evol. 29, 288-293.Google Scholar
  20. Di Giulio, M.: 1991, On the Relationships Between the Genetic Code Co-evolution Hypothesis and the Physiochemical Hypothesis, Z. Naturforsch 46c, 305-312.Google Scholar
  21. Di Giulio, M.: 1994, The Phylogeny of tRNAs Seems to Confirm the Coevolution of the Origin of the Genetic Code, Orig. Life Evol. Biosph. 25, 549-564.Google Scholar
  22. Di Giulio, M.: 1997, On the Origin of the Genetic Code, J. Theor. Biol. 187, 573-581.Google Scholar
  23. Di Giulio, M.: 1998, The Historical Factor: The Biosynthetic Relationships Between Amino Acids and their Physiochemical Properties in the Origin of the Genetic Code, J. Mol. Evol. 46, 615-621.Google Scholar
  24. Di Giulio, M.: 1999a, The Coevolution Theory of the Origin of the Genetic Code, J. Molec. Evol. 48, 253-254.Google Scholar
  25. Di Giulio, M.: 1999b, The RNAWorld, the Genetic Code and the tRNA Molecule, Trends Genet. 15, 223-229.Google Scholar
  26. Di Giulio, M.: 2000, Genetic Code Origin and the Strength of Natural Selection, J. Theor. Biol. 205, 659-661.Google Scholar
  27. Di Giulio, M.: 2001a, A Blind Empiricism Against the Coevolution Theory of the Origin of the Genetic Code, J. Mol. Evol. 53, 724-732.Google Scholar
  28. Di Giulio, M.: 2001b, The Origin of the Genetic Code cannot be Studied using Measurements Based on the PAM Matrix Because this Matrix Reflects the Code itself, Making any such Analyses Tautologous, J. Theor. Biol. 208, 141-144.Google Scholar
  29. Di Giulio, M., Capobianco, M. R. and Medugno M.: 1994, On the Optimisation of the Physiochemcial Distances Between Amino Acids in the Evolution of the Genetic Code, J. Theor. Biol. 168, 43-51.Google Scholar
  30. Di Giulio, M. and Medugno, M.: 1999, Physicochemical Optimization in the Genetic Code Origin as the Number of Codified Amino Acids Increases, J. Molec. Evol. 49, 1-10.Google Scholar
  31. Di Giulio, M. and Medugno, M.: 2000, The Robust Statistical Bases of the Coevolution Theory of Genetic Code Origin, J. Molec. Evol. 50, 258-263.Google Scholar
  32. Di Giulio, M. and Medugno, M.: 2001, The Level and Landscape of Optimization in the Origin of the Genetic Code, J. Molec. Evol. 52, 372-382.Google Scholar
  33. Dillon, L. S.: 1973, The Origins of the Genetic Code, The Botan. Rev. 39, 301-345.Google Scholar
  34. Eigen, M.: 1971, Self-organization of Matter and the Evolution of Biological Macromolecules, Naturwissenschaften 58, 465-522.Google Scholar
  35. Eigen, M. and Schuster, P.: 1979, The Hypercycle: A Principle of Natural Self-organisation, Springer, New York.Google Scholar
  36. Ellington, A. D., Khrapov, M. and Shaw, C. A: 2000, The Scene of a Frozen Accident, RNA 6, 485-498.Google Scholar
  37. Epstein, C. J.: 1966, Role of the Amino-acid 'Code' and of Selection for Conformation in the Evolution of Proteins, Nature 210, 25-28.Google Scholar
  38. Eschenmoser, A.: 1999, Chemical Etiology of Nucleic Acid Structure, Science 284, 2118-2124.Google Scholar
  39. Figureau, A.: 1987, Information Theory and the Genetic Code, Orig Life 17, 439-449.Google Scholar
  40. Figureau, A.: 1989, Optimization and the Genetic Code, Orig. Life Evol. Biosph. 19, 57-67.Google Scholar
  41. Figureau, A. and Pouzet, M.: 1984, Genetic Code and Optimal Resistance to the Effect of Mutations, Orig. Life Evol. Biosph. 14, 579-588.Google Scholar
  42. Fisher, R. A.: 1930, The Genetical Theory of Natural Selection, Oxford University Press, Oxford.Google Scholar
  43. Fitch, W. M.: 1966a, An Improved Method for Testing for Evolutionary Homology, J. Mol. Biol. 16, 9-16.Google Scholar
  44. Fitch, W. M.: 1966b, The Relation Between Frequencies of Amino Acids and Ordered Trinucleotides, J. Mol. Biol. 16, 1-8.Google Scholar
  45. Fitch, W. M. and Upper, K.: 1987, The Phylogeny of tRNA Sequences Provides Evidence for Ambiguity Reduction in the Origin of the Genetic Code, Cold Spring Harbour Symp. Quant. Biol. 52, 759-767.Google Scholar
  46. Freeland, S. J.: 2002, The Darwinian Code: An Adaptation for Adapting, J. Gen. Progr. Evolv. Machines 3, 113-127.Google Scholar
  47. Freeland, S. J. and Hurst, L. D.: 1998a, The Genetic Code is One in a Million, J. Mol. Evol. 47, 238-248.Google Scholar
  48. Freeland, S. J. and Hurst, L. D.: 1998b, Load Minimisation of the Code: History does not Explain the Pattern, Proc. Roy. Soc. Lond. B 265, 2111-2119.Google Scholar
  49. Freeland, S. J., Knight, R. D. and Landweber, L. F.: 2000a, Measuring Adaptation within the Genetic Code, Trends Biochem. Sci. 25, 44-45.Google Scholar
  50. Freeland, S. J., Knight, R. D., Landweber L. F. and Hurst, L. D.: 2000b, Early Fixation of an Optimal Genetic Code, Mol. Biol. Evol. 17, 511-518.Google Scholar
  51. Friedman, S. M. and Weintstein, I. B.: 1964, Lack of Fidelity in the Translation of Ribopolynucleotides, Proc. Natl. Acad. Sci. USA 52, 988-996.Google Scholar
  52. Frisch, L. (ed.): 1966, 'The Genetic Code', Cold Spring Harbor Symposia on Quantitative Biology, pp. 1-747.Google Scholar
  53. Gamow, G.: 1954, Possible Relation Between Deoxyribonucleic Acid and Protein Structures, Nature 173, 318.Google Scholar
  54. Gamow, G. and Ycas, M.: 1955, Statistical Correlation of Protein and Ribonucleic Acid Composition, Proc. Natl. Acad. Sci. USA 41, 1011-1019.Google Scholar
  55. Gesteland, R. F. and Atkins, J. F.: 1993, The RNA World, Cold Spring Harbour, Cold Spring Harbour Laboratory Press, New York.Google Scholar
  56. Gesteland, R. F., Cech, T. and Atkins J. F. (eds): 1999, The RNA World, Cold Spring Harbor Monograph Series, Cold Spring Harbor Laboratory, New York.Google Scholar
  57. Gilis, D., Massar, S. and Rooman M.: 2001, Optimality of the Genetic Code with Respect to Protein Stability and Amino-acid Frequencies, Genome Biol. 2, RESEARCH0049.Google Scholar
  58. Goldberg, A. L. and R. E. Wittes: 1966, Genetic Code: Aspects of Organisation, Science 153, 420-424.Google Scholar
  59. Goldman, N.: 1993, Further Results on error Minimization in the Genetic Code, J. Mol. Evol. 37, 662-664.Google Scholar
  60. Grivell, L. A.: 1986, Deciphering Divergent Codes, Nature 324, 109-110.Google Scholar
  61. Haig, D. and Hurst, L. D.: 1991, A Quantitative Measure of Error Minimisation within the Genetic Code, J. Mol. Evol. 33, 412-417.Google Scholar
  62. Haig, D. and Hurst, L. D.: 1999, A Quantitative Measure of Error Minimization in the Genetic Code, J. Mol. Evol. 49, 708.Google Scholar
  63. Hartman, H.: 1975, Speculations on the Evolution of the Genetic Code, Orig. Life. 6(3), 423-427.Google Scholar
  64. Hartman, H.: 1978, Speculations on the Evolution of the Genetic Code. II, Orig. Life 9, 133-136.Google Scholar
  65. Hartman, H.: 1984, Speculations on the Evolution of the Genetic Code III: The Evolution of t-RNA, Orig. Life 14, 643-648.Google Scholar
  66. Hartman, H.: 1995a, Speculations on the Evolution of the Genetic Code IV. The Evolution of the Aminoacyl-tRNA Synthetases, Orig. Life Evol. Biosph. 25, 265-269.Google Scholar
  67. Hartman, H.: 1995b, Speculations on the Origin of the Genetic Code, J. Mol. Evol. 40, 541-544.Google Scholar
  68. Hasegawa, M. and Miyata, T.: 1980, On the Asymmetry of the Amino Acid Code Table, Orig. Life 10, 265-270.Google Scholar
  69. Hayes, B.: 1998, The Invention of the Genetic Code, Amer. Scientist 86, 8-14.Google Scholar
  70. Illangasekare, M. and Yarus, M.: 2002, Phenylalanine-binding RNAs and Genetic Code Evolution, J. Mol. Evol. 54, 298-311.Google Scholar
  71. Jimenez-Sanchez: 1995, On the Origin and Evolution of the Genetic Code, J. Mol. Evol. 41, 712-716.Google Scholar
  72. Judson, O. and Haydon, D.: 1999, The Genetic Code: What is it Good for? An Analysis of the Effects of Selection Pressures on Genetic Codes, J. Mol. Evol. 49, 539-550.Google Scholar
  73. Jukes, T. H.: 1981, Amino Acids Codes in Mitochondria as Possible Clues to Primitive Codes, J. Mol. Evol. 18, 15-17.Google Scholar
  74. Kargupta, H.: 2001, A Striking Property of Genetic Code-like Transformations, Compl. Syst. 13, 1-32.Google Scholar
  75. Kauffman, S. A.: 1993, The Origins of Order: Self Organisation and Selection in Evolution, Oxford University Press, New York.Google Scholar
  76. King, J. L. and Jukes, T. H.: 1969, Non-Darwinian Evolution, Science 164, 788-798.Google Scholar
  77. Knight, R. D., Freeland, S. J. and Landweber, L. F.: 1999, Selection, History and Chemistry: The Three Faces of the Genetic Code, Trends Biochem. Sci. 24, 241-247.Google Scholar
  78. Knight, R. D., Freeland, S. J. and Landweber L. F.: 2001a, Rewiring the Keyboard: Evolvability of the Genetic Code, Nat. Rev. Genet. 2, 49-58.Google Scholar
  79. Knight, R. D., Landweber, L. F. and Yarus, M.: 2001b, How Mitochondria Redefine the Code, J. Mol. Evol. 53, 299-313.Google Scholar
  80. Knight, R. D., Freeland, S. J. and Landweber L. F.: 2001c, A Simple Model Based on Mutation and Selection Explains Trends in Codon and Amino-acid Usage and GC Composition within and Across Genomes. Genome Biol. 2001 2(4), RESEARCH0010.Google Scholar
  81. Knight, R. D. and Landweber, L. F: 1998, Rhyme or Reason: RNA-arginine Interactions and the Genetic Code, Chem. Biol. 5, R215-R220.Google Scholar
  82. Knight, R. D. and Landweber, L. F: 2000a, The Early Evolution of the Genetic Code, Cell 101, 569-572.Google Scholar
  83. Knight, R. D. and Landweber, L. F: 2000b, Guilt by Association: The Arginine Case Revisited, RNA 6, 499-510.Google Scholar
  84. Lehman, N. and Jukes, T. H.: 1988, Genetic Code Development by Stop Codon Takeover, J. Theor. Biol. 135, 203-214.Google Scholar
  85. Luo, L. F.: 1988, The Degeneracy Rule of Genetic Code, Orig. Life 18, 65-70.Google Scholar
  86. Luo, L. F.: 1989, The Distribution of Amino Acids in Genetic Code, Orig. Life 19, 621-631.Google Scholar
  87. Luo, L. F. and Li, X.: 2002, Coding Rules for Amino Acids in the Genetic Code: The Genetic Code is a Minimal Code of Mutational Deterioration, Orig. Life Evol. Biosph. 32, 621-631.Google Scholar
  88. Maeshiro, T. and Kimura, M.: 1998, The Role of Robustness and Changeability on the Origin and Evolution of Genetic Codes, Proc. Natl. Acad. Sci. USA 95, 5088-5093.Google Scholar
  89. Osawa, S.: 1995, Evolution of the Genetic Code, Oxford University Press, Oxford.Google Scholar
  90. Osawa, S. and Jukes, T. H.: 1989, Codon Reassignment (Codon Capture) in Evolution, J. Mol. Evol. 21, 271-278.Google Scholar
  91. Pace, C., Shirley, B., McNutt, M., and Gajiwala, K.: 1996, Forces Contributing to the Conformational Stability of Proteins, FASEB J. 10, 75-83.Google Scholar
  92. Parker, J.: 1989, Errors and Alternatives in Reading the Universal Genetic Code, Microbiol. Rev. 55, 273-298.Google Scholar
  93. Petrov, D. and Hartl, D.: 1999, Patterns of Substitution in Drosophila and Mammalian Genomes, Proc. Natl. Acad. Sci. USA 96, 1475-1479.Google Scholar
  94. Piccirilli, J. A., Krauch, T., Moroney S. E. and Benner S. A.: 1990, Enzymatic Incorporation of a New Base Pair into DNA and RNA Extends the Genetic Alphabet, Nature 343, 33-37.Google Scholar
  95. Ronneberg, T. A., Landweber, L. F. and Freeland, S. J.: 2000, Testing a Biosynthetic Theory of the Genetic Code: Fact or Artifact? Proc. Natl. Acad. Sci. USA 97, 13690-13695.Google Scholar
  96. Sella, G. and Ardell, D.: 2002, The Impact of Message Mutation on the Fitness of a Genetic Code, J. Mol. Evol. 54, 638-651.Google Scholar
  97. Shepherd, J. C.: 1981, Periodic Correlations in DNA Sequences and Evidence Suggesting their Evolutionary Origin in a Comma-less Genetic Code, J. Mol. Evol. 17, 94-102.Google Scholar
  98. Sonneborn, T. M.: 1965, Degeneracy in the Genetic Code: Extent, Nature and Genetic Implications, Evolving Genes and Proteins, V. Bryson and H. J. Vogel (eds), Academic Press, New York and London.Google Scholar
  99. Sowerby, S. J. and Heckl, W. M.: 1998, The Role of Self-assembled Monolayers of the Purine and Pyrimidine Bases in the Emergence of Life, Orig. Life Evol. Biosph. 28, 283-310.Google Scholar
  100. Stahl, G., McCarty, G. and Farabaugh P. J.: 2002, Ribosome Structure: Revisiting the Connection Between Translational Accuracy and Unconventional Decoding, Trends Biochem. Sci. 27, 178-183.Google Scholar
  101. Swanson, R.: 1984, A Unifying Concept for the Amino Acid Code, Bull. Math. Biol. 46, 187-203.Google Scholar
  102. Szathmáry, E.: 1991a, Codon Swapping as a Possible Evolutionary Mechanism, J. Mol. Evol. 32, 178-182.Google Scholar
  103. Szathmáry, E.: 1991b, Four Letters in the Genetic Alphabet: A Frozen Evolutionary Optimum? Proc. Roy. Soc. Lond. B 245, 91-99.Google Scholar
  104. Szathmáry, E.: 1992, What is the Optimum Size for the Evolutionary Alphabet? Proc. Natl. Acad. Sci. USA 89, 2614-2618.Google Scholar
  105. Szathmáry, E.: 1999, The Origin of the Genetic Code, Trends Genetics 15, 223-229.Google Scholar
  106. Szathmáry, E. and Maynard Smith, J.: 1995, The Major Transitions in Evolution, W. H. Freeman, Oxford and New York.Google Scholar
  107. Szathmáry, E. and Zintzaras, E.: 1992, A Statistical Test of Hypotheses on the Organization and Origin of the Genetic Code, J. Mol. Evol. 35, 185-189.Google Scholar
  108. Tomii, K. and Kanehisa, M.: 1996, Analysis of Amino Acid Indices and Mutation Matrices for Sequence Comparison and Structure Prediction of Proteins, Protein Eng. 9, 27-36.Google Scholar
  109. Topal, M. D. and Fresco, J. R.: 1976, Complementary Base Pairing and the Origin of Substitution Mutations, Nature 263, 285-289.Google Scholar
  110. Trifonov, E. and Bettecken, T.: 1997, Sequence Fossils, Triplet Expansion, and Reconstruction of Earliest Codons, Gene 205, 1-6.Google Scholar
  111. Trifonov, E. N.: 2000, Consensus Temporal Order of Amino Acids and Evolution of the Triplet Code, Gene 261, 139-151.Google Scholar
  112. Volkenstein, M. V.: 1965, Coding of Polar and Non-polar Amino Acids, Nature 207, 294-295.Google Scholar
  113. Wakeley, J.: 1994, Substitution-rate Variation Among Sites and the Estimation of Transition Bias, Mol. Biol. Evol. 11, 436-442.Google Scholar
  114. Weber, A. L. and Miller, S. L.: 1981, Reasons for the Occurrence of the Twenty Coded Protein Amino Acids, J. Mol. Evol. 17, 273-284.Google Scholar
  115. Woese, C. R.: 1965, On the Evolution of the Genetic Code, Proc. Natl. Acad. Sci. USA 54, 1546-1552.Google Scholar
  116. Woese, C. R.: 1973, Evolution of the Genetic Code, Naturwissenschaften 60, 447-459.Google Scholar
  117. Woese, C. R., Dugre, D. H., Saxinger W. C. and Dugre S. A.: 1966, On the Fundamental Nature and Evolution of the Genetic Code, Cold Spring Harbour Symp. Quant. Biol. 31, 723-736.Google Scholar
  118. Wong, J. T.-F.: 1975, A Co-evolution Theory of the Genetic Code, Proc. Natl. Acad. Sci. USA 72, 1909-1912.Google Scholar
  119. Wong, J. T.-F.: 1976, The Evolution of a Universal Genetic Code, Proc. Natl. Acad. Sci. USA 73, 2336-2340.Google Scholar
  120. Wong, J. T.-F.: 1980, Role of Minimisation of Chemical Distances Between Amino Acids in the Evolution of the Genetic Code, Proc. Natl. Acad. Sci. USA 77, 1083-1086.Google Scholar
  121. Wong, J. T.-F.: 1981, Co-evolution of the Genetic Code and Amino Acid Biosynthesis, Trends Biochem. Sci. 6, 33-35.Google Scholar
  122. Wong, J. T.-F.: 1988, Evolution of the Genetic Code, Microbiol. Sci. 5, 174-181.Google Scholar
  123. Wong, J. T.-F. and P. M. Bronskill: 1979, Inadequacy of Pre-biotic Synthesis as the Origin of Proteinaceous Amino Acids, J. Mol. Evol. 13, 115-125.Google Scholar
  124. Yarus, M.: 2000, RNA-ligand Chemistry: A Testable Source for the Genetic Code, RNA 6 475-484.Google Scholar
  125. Zuckerkandl, E. and Pauling, L.: 1965, Evolutionary Divergence and Convergence in Proteins. Evolving Genes and Proteins, V. Bryson and H. J. Vogel (eds), Academic Press, New York and London.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Department of BiologyUniversity of MarylandBaltimore County, CatonsvilleU.S.A.

Personalised recommendations