Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 35, Issue 4, pp 281–289 | Cite as

A Journey from Mammals to Yeast with Vacuolar H+-ATPase (V-ATPase)

  • Nathan Nelson
Article

Abstract

The vacuolar H+-ATPase (V-ATPase) is one of the most fundamental enzymes in nature. It functions in almost every eukaryotic cell and energizes a wide variety of organelles and membranes. V-ATPase has a structure and mechanism of action similar to F-ATPase and several of their subunits probably evolved from common ancestors. In eukaryotic cells, F-ATPase is confined to the semiautonomous organelles, chloroplasts and mitochondria, which contain their own genes that encode some of the F-ATPase subunits. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the protonmotive force (pmf), V-ATPases function exclusively as ATP-dependent proton pumps. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. It was the survival of the yeast mutant without the active enzyme and yeast genetics that allowed the identification of genuine subunits of the V-ATPase. It also revealed special properties of individual subunits, factors that are involved in the enzyme's biogenesis and assembly, as well as the involvement of V-ATPase in the secretory pathway, endocytosis, and respiration. It may be the insect V-ATPase that unconventionally resides in the plasma membrane of their midgut, that will give the first structure resolution of this complex.

V-ATPase F-ATPase protonmotive force slip membrane energization biogenesis assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apperson, M., Jensen, R. E., Suda, K., Witte, C., and Yaffe, M. P. (1990). Biochem. Biophys. Res. Commun. 168, 574–579.PubMedGoogle Scholar
  2. Apps, D. K., and Schatz, G. (1979). Eur. J. Biochem. 100, 411–419.PubMedGoogle Scholar
  3. Arai, H., Berne, M., Terres, G., Terres, H., Puopolo, K., and Forgac, M. (1987). Biochemistry 26, 6632–6638.PubMedGoogle Scholar
  4. Aviezer-Hagai, Padler-Karavani, and Nelson (2003). Exp. Biol. (in press).Google Scholar
  5. Bauerle, C., Ho, M. N., Lindorfer, M. A., and Stevens, T. H. (1993). J. Biol. Chem. 268, 12749–12757.PubMedGoogle Scholar
  6. Beltrán, C., Kopecky, J., Pan, Y.-C. E., Nelson, H., and Nelson, N. (1992). J. Biol. Chem. 267, 774–779.PubMedGoogle Scholar
  7. Beltrán, C., and Nelson, N. (1992). Acta. Physiol. Scand. 146, 41–47.PubMedGoogle Scholar
  8. Bowman, E. J., and Bowman, B. J. (1982). J. Bacteriol. 151, 1326–1337.PubMedGoogle Scholar
  9. Bowman, E. J., Siebers, A., and Altendorf, K. (1988a). Proc. Natl. Acad. Sci. U.S.A. 85, 7972–7976.Google Scholar
  10. Bowman, E. J., Tenney, K., and Bowman, B. J. (1988b). J. Biol. Chem. 263, 13994–14001.PubMedGoogle Scholar
  11. Bowman, J. B., Allen, R., Wechser, M. A., and Bowman, E. J. (1988c). J. Biol. Chem. 263, 14002–14007.PubMedGoogle Scholar
  12. Cidon, S., and Nelson, N. (1983). J. Biol. Chem. 258, 2892–2898.PubMedGoogle Scholar
  13. Clague, M. J., Urbe, S., Aniento, F., and Gruenberg, J. (1994). J. Biol. Chem. 269, 21–24.PubMedGoogle Scholar
  14. Cohen, A., Perzov, N., Nelson, H., and Nelson, N. (1999). J. Biol Chem. 274, 26885–26893.PubMedGoogle Scholar
  15. Cousin, M. A., and Nicholls, D. G. (1997). J. Neurochem. 69, 1927–1935.PubMedGoogle Scholar
  16. Crider, B. P., Andersen, P., White, A. E., Zhou, Z., Li, X., Mattsson, J. P., Lundberg, L., Keeling, D. J., Xie, X. S., Stone, D. K., and Peng, S. B. (1997). J. Biol. Chem. 272, 10721–10728.PubMedGoogle Scholar
  17. Dean, G. E., Fishkes, H., Nelson, P. J., and Rudnick, G. (1984). J. Biol. Chem. 259, 9569–9574.PubMedGoogle Scholar
  18. Dean, G. E., Nelson, P. J., and Rudnick, G. (1986). Biochemistry 25, 4918–4925.PubMedGoogle Scholar
  19. Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1988). J. Biol. Chem. 263, 17251–17254.PubMedGoogle Scholar
  20. D'Hondt, K., Heese-Peck, A., and Riezman, H. (2000). Annu. Rev. Genet. 34, 255–295.PubMedGoogle Scholar
  21. Forgac, M., Cantley, L., Wiedenmann, B., Altstiel, L., and Branton, D. (1983). Proc. Natl. Acad. Sci. U.S.A. 80, 1300–1303.PubMedGoogle Scholar
  22. Foury, F. (1990). J. Biol. Chem. 265, 18554–18560.PubMedGoogle Scholar
  23. Gibbons, C., Montgomery, M. G., Leslie, A. G., and Walker, J. E. (2000). Nat. Struct. Biol. 7, 1055–1061.PubMedGoogle Scholar
  24. Gluck, S., and Caldwell, J. (1987). J. Biol. Chem. 262, 15780–15789.PubMedGoogle Scholar
  25. Graham, L. A., Hill, K. J., and Stevens, T. H. (1998). J. Cell Biol. 142, 39–49.PubMedGoogle Scholar
  26. Grüber, G., Wieczorek, H., Harvey, W. R., and Müller, V. (2001). J. Exp. Biol. 204, 2597–2605.PubMedGoogle Scholar
  27. Guttenberger, M. (2000). Planta 211, 299–304.PubMedGoogle Scholar
  28. Hagai, K., Nelson, H., and Nelson, N. (2000). Biochim. Biopys. Acta 1459, 489–498.Google Scholar
  29. Hirata, R., Graham, L. A., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1997). J. Biol. Chem. 272, 4795–4803.PubMedGoogle Scholar
  30. Johnson, R. G., Beers, M. F., and Scarpa, A. (1982). J. Biol. Chem. 257, 10701–10707.PubMedGoogle Scholar
  31. Johnson, R. G., and Scarpa, A. (1976). J. Biol. Chem. 251, 2189–2191.PubMedGoogle Scholar
  32. Jones, P. C., Harrison, M. A., Kim, Y. I., Finbow, M. E., and Findlay, J. B. (1995). Biochem. J. 312, 739–747.PubMedGoogle Scholar
  33. Junge, W., Lill, H., and Engelbrecht, S. (1997). TIBS 22, 420–423.PubMedGoogle Scholar
  34. Kakinuma, Y., Ohsumi, Y., and Anraku, Y. (1981). J. Biol. Chem. 256, 10859–10863.PubMedGoogle Scholar
  35. Kane, P. M. (1995). J. Biol. Chem. 270, 17025–17032.PubMedGoogle Scholar
  36. Kanner, B. I., and Schuldiner, S. (1987). CRC Crit. Rev. Biochem. 22, 1–38.PubMedGoogle Scholar
  37. Kawasaki-Nishi, S., Bowers, K., Nishi, T., Forgac, M., and Stevens, T. H. (2001). J. Biol. Chem. 276, 47411–47420.PubMedGoogle Scholar
  38. Kirshner, N. (1962). J. Biol. Chem. 237, 2311–2317.PubMedGoogle Scholar
  39. Lepier, A., Graf, R., Azuma, M., Merzendorfer, H., Harvey, W. R., and Wieczorek, H. (1996). J. Biol. Chem. 271, 8502–8508.PubMedGoogle Scholar
  40. Mandala, S., and Taiz, L. (1986). J. Biol. Chem. 261, 12850–12855.PubMedGoogle Scholar
  41. Mandel, M., Moriyama, Y., Hulmes, J. D., Pan, Y.-C. E., Nelson, H., and Nelson, N. (1988). Proc. Natl. Acad. Sci. U.S.A. 85, 5521–5524.PubMedGoogle Scholar
  42. Manolson, M. F., Ouellette, B. F. F., Filion, M., and Poole, R. J. (1988). J. Biol. Chem. 263, 17987–17994.PubMedGoogle Scholar
  43. Manolson, M. F., Proteau, D., Preston, R. A., Stenbit, A., Roberts, T., Hoyt, M. A., Preuss, D., Mulholland, J., Botstein, D., and Jones, E. W. (1992). J. Biol. Chem. 267, 14294–14303.PubMedGoogle Scholar
  44. Manolson, M. F., Wu, B., Proteau, D., Taillon, B. E., Roberts, B. T., Hoyt, M. A., and Jones, E. W. (1994). J. Biol. Chem. 269, 14064–14074.PubMedGoogle Scholar
  45. Mellman, I., Fuchs, R., and Helenius, A. (1986). Annu. Rev. Biochem. 55, 663–700.PubMedGoogle Scholar
  46. Moriyama, Y., and Nelson, N. (1987). J. Biol. Chem. 262, 9175–9180.PubMedGoogle Scholar
  47. Moriyama, Y., and Nelson, N. (l988) J. Biol. Chem. 263, 852l–8527.Google Scholar
  48. Moriyama, Y., and Nelson, N. (1989a). J. Biol. Chem. 264, 3577–3582.PubMedGoogle Scholar
  49. Moriyama, Y., and Nelson, N. (1989b). J. Biol. Chem. 264, 18445–18450.PubMedGoogle Scholar
  50. Moriyama, Y., and Nelson, N. (1989c). Biochim. Biophys. Acta 980, 241–247.PubMedGoogle Scholar
  51. Müller, O., Bayer, M. J., Peters, C., Andersen, J. S., Mann, M., and Mayer, A. (2002). EMBO J. 21, 259–269.PubMedGoogle Scholar
  52. Munn, A. L., and Riezman, H. (1994). J. Cell Biol. 127, 373–386.PubMedGoogle Scholar
  53. Nelson, H., Mandiyan, S., and Nelson, N. (1989). J. Biol. Chem. 264, 1775–1778.PubMedGoogle Scholar
  54. Nelson, H., Mandiyan, S., and Nelson, N. (1994). J. Biol. Chem. 269, 24150–24155.PubMedGoogle Scholar
  55. Nelson, H., Mandiyan, S., and Nelson, N. (1995.) Proc. Natl. Acad. Sci. U.S.A. 92, 497–501.PubMedGoogle Scholar
  56. Nelson, H., Mandiyan, S., Noumi, T., Moriyama, Y., Miedel, M. C., and Nelson, N. (1990). J. Biol. Chem. 265, 20390–20393.PubMedGoogle Scholar
  57. Nelson, H., and Nelson, N. (1989). FEBS Lett. 247, 147–153.PubMedGoogle Scholar
  58. Nelson, H., and Nelson, N. (1990). Proc. Natl. Acad. Sci. U.S.A. 87, 3503–3507.PubMedGoogle Scholar
  59. Nelson, N. (1989). 21, 553–571.Google Scholar
  60. Nelson, N. (1992). Biochim. Biophys. Acta 1100, 109–124.PubMedGoogle Scholar
  61. Nelson, N., and Harvey, W. R. (1999). Physiol. Rev. 79, 361–385.PubMedGoogle Scholar
  62. Nelson, N., and Klionsky, D. J. (1996). Experientia 52, 1101–1110.PubMedGoogle Scholar
  63. Nelson, N., Sacher, A., and Nelson, H. (2002). Nat. Rev. Mol. Cell. Biol. 3, 876–881.PubMedGoogle Scholar
  64. Nishi, T., and Forgac, M. (2002). Nat. Rev. Mol. Cell. Biol. 3, 94–103.PubMedGoogle Scholar
  65. Nishi, T., Kawasaki—Nishi, S., and Forgac, M. (2003). J. Biol. Chem. 278, 5821–5827.PubMedGoogle Scholar
  66. Njus, D., and Radda, G. K. (1978). Biochim. Biophys. Acta 463, 219–244.PubMedGoogle Scholar
  67. Noumi, T., Beltrán, C., Nelson, H., and Nelson, N. (1991). Proc. Natl. Acad. Sci. U.S.A. 88, 1938–1942.PubMedGoogle Scholar
  68. Ohya, Y., Umemoto, N., Tanida, I., Ohta, A., Iida, H., and Anraku, Y. (1991). J. Biol. Chem. 266, 13971–13977.PubMedGoogle Scholar
  69. Perzov, N., Nelson, H., and Nelson, N. (2000). J. Biol. Chem. 275, 40088–40095.PubMedGoogle Scholar
  70. Perzov, N., Padler-Karavani, V., Nelson, H., and Nelson, N. (2001). FEBS Lett. 504, 223–228.PubMedGoogle Scholar
  71. Perzov, N., Padler-Karavani, V., Nelson, H., and Nelson, N. (2002). J. Exp. Biol. 205, 1209–1219.PubMedGoogle Scholar
  72. Peters, C., Bayer, M. J., Buhler, S., Andersen, J. S., Mann, M., and Mayer, A. (2001). Nature 409, 581–588.PubMedGoogle Scholar
  73. Racker, E. (1976). A New Look at Mechanisms in Bioenergetics, Academic Press, New York.Google Scholar
  74. Racker, E., and Stoeckenius, W. (1974). J. Biol. Chem. 249, 662–663.PubMedGoogle Scholar
  75. Radermacher, M., Ruiz, T., Wieczorek, H., and Grüber, G. (2001). J. Struct. Biol. 135, 26–37.PubMedGoogle Scholar
  76. Randall, S. K., and Sze, H. (1986). J. Biol. Chem. 261, 1364–1371.PubMedGoogle Scholar
  77. Roisin, M. P., and Henry, J. P. (1982). Biochim. Biophys. Acta 681, 292–299.PubMedGoogle Scholar
  78. Sagermann, M., Stevens, T. H., and Matthews, B. W. (2001). Proc. Natl. Acad. Sci. U.S.A. 98, 7134–7139.PubMedGoogle Scholar
  79. Serrano, R., Kielland—Brandt, M. C., and Fink, G. R. (1986). Nature 319, 689–693.PubMedGoogle Scholar
  80. Sikora, A., Hillmer, S., and Robinson, D. G. (1998). J. Plant Physiol. 152, 207–212.Google Scholar
  81. Stevens, T. H., and Forgac, M. (1997). Ann. Rev. Dev. Biol. 13, 779–808.Google Scholar
  82. Stock, D., Gibbons, C., Arechaga, I., Leslie, A. G., and Walker, J. E. (2000). Curr. Opin. Struct. Biol. 10, 672–679.PubMedGoogle Scholar
  83. Stone, D. K., Xie, X.-S., and Racker, E. (1983). J. Biol. Chem. 258, 4059–4062.PubMedGoogle Scholar
  84. Sumner, J. P., Dow, J. A., Earley, F. G., Klein, U., Jager, D., and Wieczorek, H. (1995). J. Biol. Chem. 270, 5649–5653.PubMedGoogle Scholar
  85. Supek, F., Supekova, L., Mandiyan, S., Pan, Y.-C. E., Nelson, H., and Nelson, N. (1994a). J. Biol. Chem. 269, 24102–24106.PubMedGoogle Scholar
  86. Supek, F., Supekova, L., and Nelson, N. (1994b). J. Biol. Chem. 269, 26479–26485.PubMedGoogle Scholar
  87. Supekova, L., Sbia, M., Supek, F., Ma, Y., and Nelson, N. (1996). J. Exp. Biol. 199, 1147–1156.PubMedGoogle Scholar
  88. Supekova, L., Supek, F., and Nelson, N. (1995). J. Biol. Chem. 270, 13726–13732.PubMedGoogle Scholar
  89. Sze, H. (1985). Annu. Rev. Plant Physiol. 36, 175–208.Google Scholar
  90. Uchida, E., Ohsumi, Y., and Anraku, Y. (1985). J. Biol. Chem. 260, 1090–1095.PubMedGoogle Scholar
  91. Umemoto, N., Yoshihisa, T., Hirata, R., and Anraku, Y. (1990). J. Biol. Chem. 265, 18447–18453.PubMedGoogle Scholar
  92. van Deurs, B., Holm, P. K., and Sandvig, K. (1996). Eur. J. Cell Biol. 69, 343–350.PubMedGoogle Scholar
  93. van Weert, A. W., Dunn, K. W., Gueze, H. J., Maxfield, F. R., and Stoorvogel, W. (1995). J. Cell Biol. 130, 821–834.PubMedGoogle Scholar
  94. Wang, S.-Y., Moriyama, Y., Mandel, M., Hulmes, J. D., Pan, Y.-C. E., Danho, W., Nelson, H., and Nelson, N. (1989). J. Biol. Chem. 263, 17638–17642.Google Scholar
  95. Wieczorek, H., Grüber, G., Harvey, W. R., Huss, M., Merzendorfer, H., and Zeiske, W. (2000). J. Exp. Biol. 203, 127–135.PubMedGoogle Scholar
  96. Wilkens, S., Vasilyeva, E., and Forgac, M. (1999). J. Biol. Chem. 274, 31804–31810.PubMedGoogle Scholar
  97. Xie, X.-S., Stone, D. K., and Racker, E. (1984). J. Biol. Chem. 259, 11676–11678.PubMedGoogle Scholar
  98. Xie, X.-S., and Stone, D. K. (1986). J. Biol. Chem. 261, 2492–2495.PubMedGoogle Scholar
  99. Yaver, D. S., Nelson, H., Nelson, N., and Klionsky, D. J. (1993). J. Biol. Chem. 268, 10564–10572.PubMedGoogle Scholar
  100. Yoshida, S., and Anraku, Y. (2000). Mol. Gen. Genet. 263, 877–888.PubMedGoogle Scholar
  101. Zachowski, A., Henry, J. P., and Devaux, P. F. (1989). Nature 340, 75–76.PubMedGoogle Scholar
  102. Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H., and Taiz, L. (1988). J. Biol. Chem. 263, 9102–9112.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Nathan Nelson
    • 1
  1. 1.Department of Biochemistry, The George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations