Behavior Genetics

, Volume 33, Issue 5, pp 485–501 | Cite as

Individual Variation in Aggression of Feral Rodent Strains: A Standard for the Genetics of Aggression and Violence?

  • Sietse F. de Boer
  • Bea J. van der Vegt
  • Jaap M. Koolhaas


This article summarizes the broad individual differences in aggressiveness and its relationship with several other behavioral, physiological, and neurobiological characteristics that exist in an outbred laboratory strain of male feral rats. Based on the observations that the individual level of offensive aggressive behavior (i.e., the tendency to defend the home territory) is strongly related to the way they react to various other environmental challenges, it is argued that the individual's level of offensiveness is an important indicator and component of a more traitlike behavioral physiological response pattern (coping strategy) to environmental demands. The coping style of aggressive animals is principally aimed at a (pro)active prevention or manipulation of a stressor, whereas the nonaggressive individuals tend to passively accept or react to it. The (pro)active and reactive/passive behavioral coping styles are clearly associated with distinct patterns of autonomic/endocrine (re)activity and underlying neurobiological correlates and determinants. Consequently, these individual differences in aggression/coping style may not only determine the individual vulnerability to stress-related disease, and hence be an important factor in the population dynamics of the species, but may also determine responsivity to pharmacotherapeutic treatments. From an animal modeling point of view, it is argued that the aggressive extremes of this variation may, under the proper testing conditions, have an enhanced propensity to develop pathological forms of aggression and/or coping, for example, antisocial traits, violence, or impulsivity disorders. Finally, it is proposed that the use of these feral animals as base “material” for genetic association (i.e., QTL search, mRNA differential expression, nucleic acid microarray analysis) and manipulation (i.e., gene silencing or amplification by antisense ODN, siRNA, and/or viral gene-transfer methodologies) studies would most likely be the best option for dissecting successfully the genetic basis of both normal and pathological forms of aggression and/or coping.

Pathological aggression animal model individual variation coping strategies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. B. (1979). Brain mechanisms for offense, defense and submission. Behav. Brain Sci. 2:201-241.Google Scholar
  2. Bandler, R., Price, J. L., and Keay, K. A. (2000). Brain mediation of active and passive emotional coping. Prog. Brain Res. 122:333-349.Google Scholar
  3. Barnett, S. A. (1975). The rat: A study of behavior. Chicago: The University of Chicago Press.Google Scholar
  4. Benus, R. F., Bohus, B., Koolhaas, J. M., and van Oortmerssen, G. A. (1991). Heritable variation for aggression as a reflection of individual coping strategies. Experientia 47:1008-1019.Google Scholar
  5. Berman, M. E., Tracy, J. I., and Coccaro, E. F. (1997). The serotonin hypothesis of aggression revisited. Clin. Psychol. Rev. 17:651-665.Google Scholar
  6. Bjork, J. M., Dougherty, R. M., Moeller, G., and Swann, A. C. (2000). Differential behavioral effects of plasma tryptophan depletion and loading in aggressive and nonaggressive men. Neuropsychopharmacology 22:357-369.Google Scholar
  7. Blanchard, R. J., Flannelly, K. J., Lyang, M., and Blanchard, D. C. (1984). The effects of age and strain on aggression in male rats. Physiol. Behav. 33:857-861.Google Scholar
  8. Blanchard, R. J., and Blanchard, D. C. (1977). Aggressive behavior in the rat. Behav. Biol. 21:197-224.Google Scholar
  9. Brodkin, E. S., Goforth, S. A., Keene, A. H., Fossella, J. A., and Silver, L. M. (2002). Identification of quantitative trait loci that affect aggressive behavior in mice. J. Neurosci. 22:1165-1170.Google Scholar
  10. Cherek, D. R., Lane, S. D., Pietras, C. J., and Steinberg, J. L. (2001). Effects of chronic paroxetine administration on measures of aggressive and impulsive responses of adult males with a history of conduct disorder. Psychopharmacology 159:266-274.Google Scholar
  11. Cleare, A. J., and Bond, A. J. (1995). The effect of tryptophan depletion and enhancement on subjective and behavioral aggression in normal subjects. Psychopharmacology 118:72-81.Google Scholar
  12. Coccaro, E. F., and Kavoussi, R. J. (1996). Neurotransmitter correlates of aggression. In D. M. Stoff and R. B. Cairns (Eds.). The neurobiology of clinical aggression (pp. 67-85). Mahwah, NJ: Lawrence J. Erlbaum Associates Inc.Google Scholar
  13. Coccaro, E. F., Kavoussi, R. J., Hauger, R. L., Cooper, T. B., and Ferris, C. G. (1999). Cerebrospinal fluid vasopressin levels: Correlates with aggression and serotonin function in personalitydisordered subjects. Arch. Gen. Psychiatry 55:708-714.Google Scholar
  14. Compaan, J. C., Buijs, R. M., Pool, C. W., de Ruiter, A. J. H., and Koolhaas, J. M. (1992). Differential lateral septal vasopressin innervation in aggressive and nonaggressive male mice. Brain Res. Bull. 30:1-6.Google Scholar
  15. Daruna, J. H., and Kent, E. W. (1976). Comparison of regional serotonin levels and turnover in brain of naturally high and low aggressive rats. Brain Res. 101:489-501.Google Scholar
  16. Davidson, R. J., Putnam, K. M., and Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—A possible prelude to violence. Science 289:591-594.Google Scholar
  17. de Boer, S. F., and Koolhaas, J. M. (2003). Defensive burying in rodents: Ethology, neurobiology and psychopharmacology. Eur. J. Pharmacol. 463:145-161.Google Scholar
  18. de Boer, S. F., Lesourd, M., Mocaër, E., and Koolhaas, J. M. (1999). Selective anti-aggressive effects of alnespirone in the residentintruder test are mediated via 5-HT1A receptors: A comparitive pharmacological study with 8-OH-DPAT, ipsapirone, buspirone, eltoprazine and WAY-100635. J. Pharmacol. Exp. Ther. 288:1125-1133.Google Scholar
  19. de Boer, S. F., Lesourd, M., Mocaer, E., and Koolhaas, J. M. (2000). Somatodendritic 5-HT(1A) autoreceptors mediate the antiaggressive actions of 5-HT(1A) receptor agonists in rats: An ethopharmacological study with S-15535, alnespirone, and WAY-100635. Neuropsychopharmacology 23:20-33.Google Scholar
  20. de Boer, S. F., van der Vegt, B. J., and Koolhaas, J. M. (2001). Hypersensitivity of 5-HT1A and 5-HT1B autoreceptors as a causal neuromechanism underlying high trait aggressiveness. Soc. Neurosci. Abstr. 89:7.Google Scholar
  21. de Bruin, J. P. C. (1990). Orbial prefrontal cortex, dopamine, and social-agonistic behavior of male long-evans rats. Aggressive Behav. 16:231-248.Google Scholar
  22. de Vries, G. J., Wang, Z. X., Bullock, N. A., and Numan, S. (1994). Sex differences in the effects of testosterone and its metabolites on vasopressin messenger RNA levels in the bed nucleus of the stria terminalis of rats. J. Neurosci. 14:1789-1794.Google Scholar
  23. de Waal, F. B. M. (2000). Primates: A natural heritage of conflict resolution. Science 289:586-590.Google Scholar
  24. Delville, Y., de Vries, G. J., and Ferris, C. G. (2000). Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain Behav. Evol. 55:53-76.Google Scholar
  25. Dodman, N. H., Donnelly, R., Shuster, L., Mertens, P., Rand, W., and Miczek, K. (1996). Use of fluoxetine to treat dominance aggression in dogs. J. Am. Vet. Med. Assoc. 209:1585-1587.Google Scholar
  26. Everts, H. G. J., de Ruiter, A. J. H., and Koolhaas, J. M. (1997). Differential lateral septal vasopressin in wild-type rats: Correlation with aggression. Horm. Behav. 31:136-144.Google Scholar
  27. Fava, M. (1997). Psychopharmacologic treatment of pathologic aggression. Psychiatr. Clin. North Am. 20:427-451.Google Scholar
  28. Feldker, D. E. M., Datson, N. A., Veenema, A. H., Meulmeester, E., de Kloet, E. R., and Vreugdenhil, E. (2002). Serial analysis of gene expression predicts structural differences in hippocampus of long attack latency and short attack latency mice. Eur. J. Neurosci. 17:379-387.Google Scholar
  29. Ferris, C. G., and Delville, Y. (1994). Vasopressin and serotonin interactions in the control of agonistic behavior. Psychoneuroendocrinology 19:593-601.Google Scholar
  30. Ferris, C. G. (2000). Adolescent stress and neural plasticity in hamsters: A vasopressin-serotonin model of inappropriate aggressive behavior. Exp. Physiol. 85S:85S-90S.Google Scholar
  31. Gibbons, J. L., Barr, G. A., Bridger, W. H., and Leibowitz, S. F. (1979). Manipulations of dietary tryptophan: Effects on mouse killing and brain serotonin in the rat. Brain Res. 169:139-153.Google Scholar
  32. Grant, E. C., and MacKintosh, J. H. (1963). A comparison of the social postures of some common laboratory rodents. Behaviour 21:246-259.Google Scholar
  33. Gregg, T. R., and Siegel, A. (2001). Brain structures and neurotransmitters regulating aggression in cats: Implications for human aggression. Prog. Neuro-psychopharmacol. Biol. Psychiatry 25:91-140.Google Scholar
  34. Halasz, J., Liposits, Z., Kruk, M. R., and Haller, J. (2002). Neural background of glucocorticoid dysfunction-induced abnormal aggression in rats: Involvement of fear-and stress-related structures. Eur. J. Neurosci. 15:561-569.Google Scholar
  35. Haller, J., van de Schraaf, J., and Kruk, M. R. (2001). Deviant forms of aggression in glucocorticoid hyporeactive rats: A model for pathological aggression? J. Neuroendocrinol. 13:103-107.Google Scholar
  36. Henry, J. P., and Stephens, P. M. (1977). Stress, health and the social environment: A sociobiologic approach to medicine. New York: Springer.Google Scholar
  37. Jacobs, B. L., and Fornal, C. A. (1999). Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 21:9-15.Google Scholar
  38. Kavelaars, A., Heijnen, C. J., Tennekes, R., Bruggink, J. E., and Koolhaas, J. M. (1998). Individual behavioral characteristics of wild-type rats predict susceptibility to experimental autoimmune encephalomyelitis. Brain Behav. Immun. 13:279-286.Google Scholar
  39. Keay, K. A., and Bandler, R. (2001). Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci. Biobehav. Rev. 25:669-678.Google Scholar
  40. Kollack-Walker, S., Watson, S. J., and Akil, H. (1997). Social stress in hamsters: Defeat activates specific neurocircuits within the brain. J. Neurosci. 17:8842-8855.Google Scholar
  41. Kollack-Walker, S., and Newman, S. W. (1995). Mating and agonistic behavior produce different patterns of Fos immunolabeling in the male Syrian hamster brain. Neuroscience 66:721-736.Google Scholar
  42. Koolhaas, J. M., Schuurman, T., and Wiepkema, P. R. (1980). The organization of intraspecific agonistic behavior in the rat. Progr. Neurobiol. 15:247-268.Google Scholar
  43. Koolhaas, J. M., Moor, E., Hiemstra, Y., and Bohus, B. (1991). The testosterone dependent vasopressinergic neurons in the medial amygdala and lateral septum: Involvement in social behavior of male rats. In S. Jard and R. Jamison (Ed.), Vasopressin (pp. 213-219). Paris-London: Inserm/John Libbey Eurotexty Ltd.Google Scholar
  44. Koolhaas, J. M., de Boer, S. F., Buwalda, B., van der Vegt, B. J., Carere, C., and Groothuis, A. G. G. (2001). How and why coping systems vary among individuals. In D. M. Broom (Ed.), Coping with challenge: Welfare in animals including humans (pp. 197-209). Berlin: Dahlem University Press.Google Scholar
  45. Koolhaas, J. M., de Boer, S. F., De Rutter, A. J., Meerlo, P., and Sgoifo, A. (1997). Social stress in rats and mice. Acta Physiol. Scand. Suppl. 640:69-72.Google Scholar
  46. Koolhaas, J. M., Korte, S. M., de Boer, S. F., van der Vegt, B. J., van Reenen, C. G., Hopster, H., De Jong, I. C., Ruis, M. A., and Blokhuis, H. J. (1999). Coping styles in animals: Current status in behavior and stress—physiology. Neurosci. Biobehav. Rev. 23:925-935.Google Scholar
  47. Korte, S. M., Meijer, O. C., de Kloet, E. R., Buwalda, B., Keijser, J., Sluyter, F., van Oortmerssen, G., and Bohus, B. (1996). Enhanced 5-HT1A receptor expression in forebrain regions of aggressive house mice. Brain Res. 736:338-343.Google Scholar
  48. Korte, S. M., Beuving, G., Ruesink, W., and Blokhuis, H. J. (1997). Plasma catecholamine and corticosterone levels during manual restraint in chicks from a high and low feather pecking line of laying hens. Physiol. Behav. 62:437-441.Google Scholar
  49. Krug, et al. (Eds.), (2002). World report on violence and health. Geneva: World Health Organization.Google Scholar
  50. Landgraf, R., Wotjak, C. T., Neumann, I. D., and Engelmann, M. (1998). Release of vasopressin within the brain contributes to neuroendocrine and behavioral regulation. Prog. Brain Res. 119:201-220.Google Scholar
  51. Lore, R., and Flannely, K. (1977). Rat societies. Sci. Am. 236:106-116.Google Scholar
  52. Malmberg, T. (1980). Human territoriality: Survey of behavioural territories in man with preliminary analysis of meaning. The Hague: Mouton.Google Scholar
  53. Maxson, S. C. (2000). Genetic influences on aggressive behavior. In D. W. Pfaff, W. H. Berretini, T. H. Joh, and S. C. Maxson (Eds.), Genetic influences on neural and behavioral functions (pp. 405-416). Boca Raton: CRC Press.Google Scholar
  54. Mehlman, P. T., Higley, J. D., Faucher, I., Lilly, A. A., Taub, D. M., Vickers, J., Suomi, S. J., and Linnoila, M. (1994). Am. J. Psychiatry 151:1485-1491.Google Scholar
  55. Menard, J. L., and Meaney, M. J. (2001). Maternal care in early life influences patterns of defensive responding and associated fos expression in adulthood. Soc. Neurosci. Abstr. 541:4.Google Scholar
  56. Miczek, K. A. (1999). Aggressive and social stress response in genetically modified mice: From horizontal to vertical strategy. Psychopharmacol. 147:17-19.Google Scholar
  57. Miczek, K. A., Weerts, E. M., Haney, M., and Tidey, J. (1994). Neurobiological mechanisms controlling aggression: Preclinical developments for pharmacotherapeutic interventions. Neurosci. Biobehav. Rev. 18:97-110.Google Scholar
  58. Miczek, K. A., Maxson, S. C., Fish, E. W., and Faccidomo, S. (2001). Aggressive behavioral phenotypes in mice. Behav. Brain Res. 125:167-181.Google Scholar
  59. Miczek, K. A., Fish, E. W., de Bold, J. F., and de Almeida, R. M. M. (2002). Social and neural determinants of aggressive Pharmcotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology 163:434-458.Google Scholar
  60. Mitchell, P. J., and Redfern, P. H. (1992). Acute and chronic antidepressant drug treatments induce opposite effects in the social behaviour of rats. J. Psychopharmacol. 6:241-257.Google Scholar
  61. Mitchell, P. J., and Redfern, P. H. (1997). Potentiation of the timedependent, antidepressant-induced changes in the agonistic behaviour of resident rats by the 5-Ht1A receptor antagonist WAY-100635. Behav. Pharmacol. 8:585-606.Google Scholar
  62. Nelson, R. J., and Chiavegatto, S. (2001). Molecular basis of aggression. Trends Neurosci. 24:713-719.Google Scholar
  63. Olivier, B., Mos, J., van Oorschot, R., and Hen, R. (1995). Serotonin receptors and animal models of aggressive behavior. Pharmacopsychiatry 28:80-90.Google Scholar
  64. Olivier, B., Mos, J., Raghoebar, M., de Koning, P., and Mak, M. (1994). Serenics. In E. Jucker (Eds.), Progress in drug research (Vol. 42, pp. 167-308). Basel: Birkhauser Verlag.Google Scholar
  65. Raleigh, M. J., McGuire, M. T., Brammer, G. L., Pollack, D. B., and Yuwiler, D. B. (1991). Serotonergic mechanisms promotes dominance acquisition in adult male vervet monkeys. Brain Res. 559:181-190.Google Scholar
  66. Ruis, M. A., de Groot, J., te Brake, J. H., Dinand Ekkel, E., van de Burgwal, J. A., Erkens, J. H., Engel, B., Buist, W. G., Blokhuis, H. J., and Koolhaas, J. M. (2001). Behavioural and physiological consequences of acute social defeat in growing gilts: Effects of the social environment. Appl. Anim. Behav. Sci. 70:201-225.Google Scholar
  67. Scott, J. P. (1958). Aggression. Chicago: The University of Chicago Press.Google Scholar
  68. Sgoifo, A., de Boer, S. F., Haller, J., and Koolhaas, J. M. (1996). Individual differences in plasma catecholamine and corticosterone stress responses of wild-type rats: Relationship with aggression. Physiol. Behav. 60:1403-1407.Google Scholar
  69. Sgoifo, A., de Boer, S. F., Westenbroek, C., Maes, F. W., Beldhuis, H., Suzuki, T., and Koolhaas, J. M. (1997). Incidence of arrhythmias and heart rate variability in wild-type rats exposed to social stress. Am. J. Physiol. 273:H1754-H1760.Google Scholar
  70. Simon, N. G. et al. (1998). Testosterone and its metabolites modulate 5-HT1A and 5-HT1B agonist effects on intermale aggression. Neurosci. Biobehav. Rev. 23:325-336.Google Scholar
  71. Sluyter, F., Korte, S. M., Bohus, B., and van Oortmerssen, G. A. (1996). Behavioral stress response of genetically selected aggressive and nonaggressive wild house mice in the shockprobe/defensive burying test. Pharmacol. Biochem. Behav. 54:113-116.Google Scholar
  72. Sluyter, F., Korte, S. M., van Baal, G. C., de Ruiter, A. J., and van Oortmerssen, G. A. (1999). Y chromosomal and sex effects on the behavioral stress response in the defensive burying test in wild house mice. Physiol. Behav. 67:579-585.Google Scholar
  73. Smit, J., van Oosten, R. V., Palm, I. F., Doze, P., Koolhaas, J. M., and Zaagsma, J. (1998). Prejunctional modulation of noradrenergic neurotransmission in wild type rats: A possible relationship with coping styles. Am. J. Physiol. 7:111-122.Google Scholar
  74. Timmermans, P. J. A. (1978). Social behavior in the rat. PhD thesis. University of Nijmegen.Google Scholar
  75. Treit, D., Pinel, J. P., and Fibiger, H. C. (1981). Conditioned defensive burying: A new paradigm for the study of anxiolytic agents. Pharmacol. Biochem. Behav. 15:619-626.Google Scholar
  76. Tuinier, S., Verhoeven, W. M., and van Praag, H. M. (1995). Cerebrospinal fluid 5-hydroxyindolacetic acid and aggression: A critical reappraisal of the clinical data. Int. Clin. Psychopharmacol. 10:147-156.Google Scholar
  77. van der Vegt, B. J., Lieuwes, N., Cremer, T. I. F. H., de Boer, S. F., and Koolhaas, J. M. (2003). Cerebrospinal fluid monoamine and metabolite concentrations and aggressions in rats. Horm. Behav. (In press).Google Scholar
  78. van der Vegt, B. J., de Boer, S. F., Buwalda, B., de Ruiter, A. J., de Jong, J. G., and Koolhaas, J. M. (2001). Enhanced sensitivity of postsynaptic serotonin-1A receptors in rats and mice with high trait aggression. Physiol. Behav. 74:205-211.Google Scholar
  79. van der Vegt, B. J., Lieuwes, N., van de Wall, E. H. E. M., Kato, K., Moya-Albiol, L., Martinez-Sanchis, S., de Boer, S. F., and Koolhaas, J. M. Activation of serotonergic neurotransmission during the performance of aggressive behavior in rats. Behav. Neurosci. (in press).Google Scholar
  80. van Hooff, J. A. R. A. M. (1977). The adaptive meaning of aggressive behavior. In P. R. Wiepkema and J. A. R. A. M. van Hooff (Eds.), Aggressive behavior: Causes and functions. Utrecht: Bohn, Scheltema and Holkema.Google Scholar
  81. van Oortmerssen, G. A., and Bakker, T. C. M. (1981). Artificial selection for short and long attack latencies in wild. Mus musculus domesticus. Behav. Genet. 11:115-126.Google Scholar
  82. van Oortmerssen, G. A., and Busser, J. (1989). Disruptive selection on aggression as a possible force in evolution. In P. F. Brain, D. Mainardi, and S. Parmigiani (Eds.), House mouse aggression: A model for understanding the evolution of social behavior (pp. 87-116). Chur: Harwood Academic.Google Scholar
  83. van Oortmerssen, G. A., Benus, I., and Dijk, D. J. (1985). Studies in wild house mice: Genotype-environment interactions for attack latency. Neth. J. Zool. 35:155-169.Google Scholar
  84. van Praag, H. M. (2001). Anxiety/aggression-driven depression: A paradigm of functionalization and verticalization of psychiatric diagnosis. Prog. Neuropsychopharmacol. Biol. Psychiatry 25:893-924.Google Scholar
  85. Veenema, A. H., Meijer, O. C., De Kloet, E. R., Koolhaas, J. M., and Bohus, B. G. (2003a). Differences in basal and stress-induced HPA regulation of wild house mice selected for high and low aggression. Horm. Behav. 54:197-204.Google Scholar
  86. Veenema, A. H., Meijer, O. C., De Kloet, E. R., and Koolhaas, J. M. (2003b). Genetic selection for coping style predicts stressor susceptibility. J. Neuroendocrinol. 15:256-267.Google Scholar
  87. Verbeek, M. E. M., Drent, P. J., and Wiepkema, P. R. (1994). Consistent individual differences in early exploratory behavior of male great tits. Anim. Behav. 48:1113-1121.Google Scholar
  88. Vergnes, M., Depaulis, A., and Boehrer, A. (1986). Parachlorophenylalanine-induced serotonin depletion increases offensive but not defensive aggression in male rats. Physiol. Behav. 36:653-658.Google Scholar
  89. Walsh, M. T., and Dinan, T. G. (2001). Selective serotonin reuptake inhibitors and violence: A review of the available evidence. Acta Psychiatr. Scand. 104:84-91.Google Scholar
  90. Wersinger, S. R., Ginns, E. L., O'Carrol, A.-M., Lolait, S. J., and Young, W. S. (2002). Vasopressin V1B receptor knockout reduces aggressive behavior in male mice. Mol. Psychiatr. 7:975-984.Google Scholar
  91. Wilson, D. S. (1998). Adaptive individual differences within single populations. Phil. Tran. R. Soc. Lond. 353:199-205.Google Scholar
  92. Wilson, E. A. (1975). Sociobiology. Cambridge: Belknap Press, Harvard University Press.Google Scholar
  93. Winslow, J., Hastings, N., Carter, C., Harbaugh, C., and Insel, T. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 365:545-548.Google Scholar
  94. Young, L. J., Nilsen, R., Waymire, K. G., MacGregor, G. R., and Insel, T. R. (1999). Increased affilliative response to vasopressin in mice expressing the V1A receptor from a monogamous vole. Nature 400:766-768.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Sietse F. de Boer
  • Bea J. van der Vegt
  • Jaap M. Koolhaas

There are no affiliations available

Personalised recommendations