International Journal of Theoretical Physics

, Volume 42, Issue 6, pp 1219–1227 | Cite as

The Classical Singularity Theorems and Their Quantum Loopholes

  • L. H. Ford

Abstract

The singularity theorems of classical general relativity are briefly reviewed. The extent to which their conclusions might still apply when quantum theory is taken into account is discussed. There are two distinct quantum loopholes: quantum violation of the classical energy conditions, and the presence of quantum fluctuations of the spacetime geometry. The possible significance of each is discussed.

negative energy quantum fluctuation singularities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Belinsky, V. A. and Khalatnikov, I. M. (1969). Soviet Physics-JETP, 29, 911.Google Scholar
  2. Belinsky, V. A., Lifshitz, E. M., and Khalatnikov, I. M. (1970). Advances in Physics, 19, 525.Google Scholar
  3. Borde, A. (1987). Classical and Quantum Gravity 4, 343.Google Scholar
  4. Borde, A., Guth, A. H., and Vilenkin, A. (2001). Preprint gr-qc/0110012.Google Scholar
  5. Flanagan, E. E. (1997). Physical Review D 56, 4922[gr-qc/9706006].Google Scholar
  6. Fewster, C. J. (2000). Classical and Quantum Gravity 17, 1897[gr-qc/9910060].Google Scholar
  7. Fewster, C. J. and Eveson, S. P. (1998). Physical Review D 58, 084010[gr-qc/9805024].Google Scholar
  8. Ford, L. H. (1978). Proceedings of the Royal Society of London A 364, 227.Google Scholar
  9. Ford, L. H. (1991). Physical Review D 43, 3972.Google Scholar
  10. Ford, L. H. (1995). Physical Review D 51, 1692[gr-qc/9410047].Google Scholar
  11. Ford, L. H. and Roman, T. A. (1995). Physical Review D 51, 4277[gr-qc/9410043].Google Scholar
  12. Ford, L. H. and Roman, T. A. (1996). Physical Review D 53, 5496[gr-qc/9510071].Google Scholar
  13. Ford, L. H. and Roman, T. A. (1997). Physical Review D 55, 2082[gr-qc/9607003].Google Scholar
  14. Frolov, V., Markov, M., and Mukhanov, V. (1990). Physical Review D 41, 383.Google Scholar
  15. Galloway, G. J. (1981). Manuscripta Mathematics 31, 297.Google Scholar
  16. Hawking, S. W. and Ellis, G. F. R. (1973). The large scale structure of space-time, Cambridge University Press, Cambridge, UK.Google Scholar
  17. Hu, B. L. and Verdaguer, E. (2002). Preprint gr-qc/0211090.Google Scholar
  18. Jackel, M.-T. and Reynaud, S. (1995). Annalen Physics 4, 68[quant-ph/0101116].Google Scholar
  19. Kuo, C.-I. and Ford, L. H. (1993). Physical Review D 47, 4510[gr-qc/9304008].Google Scholar
  20. Lifshitz, E. M. and Khalatnikov, I. M. (1963). Advances in Physics, 12, 185.Google Scholar
  21. Martin, R. and Verdaguer, E. (2000). Physical Review D 61, 124024[gr-qc/0001098].Google Scholar
  22. Parentani, R. (2001). Physical Review D 63, 041503[gr-qc/0009011].Google Scholar
  23. Parker, L. and Fulling, S. A. (1973). Physical Review D 7, 2357.Google Scholar
  24. Penrose, R. (1965). Physical Review Letters 14, 57.Google Scholar
  25. Pfenning, M. J. and Ford, L. H. (1997a). Physical Review D 55, 4813[gr-qc/9608005].Google Scholar
  26. Pfenning, M. J. and Ford, L. H. (1997b). Classical and Quantum Gravity 14, 1743[gr-qc/9702026].Google Scholar
  27. Pfenning, M. J. and Ford, L. H. (1998). Physical Review D 57, 3489[gr-qc/9710055].Google Scholar
  28. Roman, T. A. (1988). Physical Review D 37, 546.Google Scholar
  29. Saa, A., Gunzig, E., Brenig, L., Faraoni, V., Rocha Filho, T. M., and Figueiredo, A. (2001). International Journal of Theoretical Physics 40, 2295.Google Scholar
  30. Shiokawa, K. (2000). Physical Review D 62, 024002[hep-th/0001088].Google Scholar
  31. Sopova, V. and Ford, L. H. (2002). Physical Review D 66, 045026[quant-ph/0204125].Google Scholar
  32. Tipler, F. J. (1979). Physical Review D 17, 2521.Google Scholar
  33. Wald, R. M. (1984). General Relativity, University of Chicago Press, Chicago, IL, Chap. 9, Singularities.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • L. H. Ford
    • 1
  1. 1.Department of Physics and Astronomy, Institute of CosmologyTufts UniversityMedford

Personalised recommendations