Journal of Neurocytology

, Volume 31, Issue 6–7, pp 551 ppl=–565 | Cite as

Synantocytes: New functions for novel NG2 expressing glia

  • Arthur M. Butt
  • Jennifer Kiff
  • Paul Hubbard
  • Martin Berry


In the adult CNS, antibodies to the NG2 chondroitin sulphate proteoglycan (CSPG) label a large population of glia that have the antigenic phenotype of oligodendrocyte progenitor cells (OPC). However, NG2 expressing glia have the morphological phenotype of astrocytes, not OPC. We propose adult NG2 expressing glia are a distinct mature glial type, which we have called syantocytes or synantoglia after the Greek ‘to contact’, because they specifically contact neurons and axons at synapses and nodes of Ranvier, respectively. Synantocytes are highly complex cells that elaborate multiple branching processes and are an equally significant population in both white and grey matter. We provide evidence that phenotypically distinct synantocytes develop postnatally and that neither postnatal nor adult synantocytes depend on axons for their survival, indicating they respond with markedly different behaviours to the environmental cues and axonal signals that control the differentiation of OPC into oligodendrocytes. The primary response of synantocytes to changes in the CNS environment is a rapid and localised reactive gliosis. Reactive synantocytes interact intimately with astrocytes and macrophages at lesion sites, consistent with them playing a key role in the orchestration of scar formation that protects the underlying neural tissue. It is our hypothesis that synantocytes are specialised to monitor and respond to changes in the integrity of the CNS, by way of their cellular contacts, repertoire of plasmalemmal receptors and the NG2 molecule itself. To paraphrase Del Rio Hortega, we propose that synantocytes are the fifth element in the CNS, in addition to neurons, astrocytes, oligodendrocytes and microglia.


  1. Akopian, G., Kressin, K., Derouiche, A.& Steinhauser, C.(1996) Identified glial cells in the early postnatal mouse hippocampus display different types of Ca2+currents. Glia 17, 181–194.Google Scholar
  2. Anderson, C. M.& Swanson, R. A.(2000) Astrocyte glutamate transport: Review of properties, regulation, and physiological functions. Glia 32, 1–14.Google Scholar
  3. Armstrong, R. C., Dorn, H. H., Kufta, C. V., Friedman, E.& Dubois-Dalcq, M. E.(1992) Pre-oligodendrocytes from adult human CNS. Journal of Neuroscience 12, 1538–1547.Google Scholar
  4. sArmstrong, R. C., Harvath, L.& Dubois-Dalcq, M. E.(1990) Type 1 astrocytes and oligodendrocytetype 2 astrocyte glial progenitors migrate toward distinct molecules. Journal of Neuroscience Research 27, 400–407.Google Scholar
  5. Armstrong, R. C., Le, T. Q., Frost, E. E., Borke, R. C.& Vana, A. C.(2002) Absence of fibroblast growth factor 2 promotes oligodendroglial repopulation of demyelinated white matter. Journal of Neuroscience 22, 8574–8585.Google Scholar
  6. Asher, R. A., Morgenstern, D. A., Fidler, P. S., Adcock, K. H., Oohira, A., Braistead, J. E., Levine, J. M., Margolis, R. U., Rogers, J. H.& Fawcett, J. W.(2000) Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. Journal of Neuroscience 20, 2427–2438.Google Scholar
  7. Asher, R. A., Morgenstern, D. A., Shearer, M. C., Adcock, K. H., Pesheva, P.& Fawcett, J. W.(2002) Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells. Journal of Neuroscience 22, 2225–2236.Google Scholar
  8. Barres, B. A.& Raff, M. C.(1993) Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361, 258–260.Google Scholar
  9. Barres, B. A.& Raff, M. C.(1999) Axonal control of oligodendrocyte development. Journal of Cell Biology 147, 1123–1128.Google Scholar
  10. Bergles, D. E., Roberts, J. D. B., Somogyi, P.& Jahr, C. E.(2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191.Google Scholar
  11. Berry, M., Butt, A. M., Wilkin, G.& Perry, H.(2002) Structure and Function of Glia. In Greenfield's Pathology(edited by Graham, D. I.& Lantos, L.). pp. 75–121. Sevenoaks, Kent: Edward Arnold.Google Scholar
  12. Berry, M., Hunter, A. S., Duncan, A., Lordan, J., Kirvell, S., Tsang, W.-L.& Butt, A. M.(1998a) Axon-glial relations during regeneration of axons in the adult rat anterior medullary velum. Journal of Neurocytology 27, 915–937.Google Scholar
  13. Berry, M., Logan, A.& Butt, A. M.(1998b) Cellular responses to penetrant CNS injury. In CNS Injuries: Cellular Responses and Pharmacological Strategies(edited by Berry, M.& Logan, A.). pp. 1–18. Boca Raton: CRC Press.Google Scholar
  14. Bruckner, G., Grosche, J., Schmidt, S., Hartig, W., Margolis, R. U., Delpech, B., Seidenbecher, C. I., Czaniera, R.& Schachner, M.(2000) Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. Journal of Comparative Neurology 428, 616–629.Google Scholar
  15. Bu, J., Akhtar, N.& Nishiyama, A.(2001) Transient expression of the NG2 proteoglycan by a subpopulation of activated macrophages in an excitotoxic hippocampal lesion. Glia 34, 296–310.Google Scholar
  16. Burg, M. A., Tillet, E., Timpl, R.& Stallcup, W. B.(1996) Binding of the NG2 proteoglycan to type VI collagenandother extracellular matrix molecules. Journal of Biological Chemistry 271, 26110–26116.Google Scholar
  17. Butt, A. M.& Berry, M.(2000) Oligodendrocytes and the control of myelination in vivo: New insights from the rat anterior medullary velum. Journal of Neuroscience Research 59, 477–488.Google Scholar
  18. Butt, A. M., Colquhoun, K., Tutton, M.& Berry, M.(1994) Three-dimensional morphology of astrocytes and oligodendrocytes in the intact mouse optic nerve. Journal of Neurocytology 23, 469–485.Google Scholar
  19. Butt, A. M., Duncan, A.& Berry, M.(1994) Astrocyte associations with nodes of Ranvier: Ultrastructural analysis of HRP-filled astrocytes in the mouse optic nerve. Journal of Neurocytology 23, 486–499.Google Scholar
  20. Butt, A. M., Duncan, A., Hornby, M. F., Kirvell, S. L., Hunter, A., Levine, J. M.& Berry, M.(1999) Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter. Glia 26, 84–91.Google Scholar
  21. Butt, A. M., Hornby, M. F., Ibrahim, M., Graham, A., Kirvell, S.& Berry, M.(1997b) PDGF-?receptor and myelin basic protein mRNAs are not coexpressed by oligodendrocytes in vivo: A double in situhybridization study in the anterior medullary velum of the neonatal rat. Molecular and Cellular Neuroscience 8, 311–322.Google Scholar
  22. Butt, A. M., Hornby, M. F., Kirvell, S.& Berry, M.(1997c) Platelet-derived growth factor delays oligodendrocyte differentiation and axonal myelination in vivoin the anterior medullary velum of the developing rat. Journal of Neuroscience Research 48, 588–596.Google Scholar
  23. Butt, A. M., Ibrahim, M.& Berry, M.(1997a) The relationship between developing oligodendrocyte units and maturing axons during myelinogenesis in the anterior medullary velum of neonatal rats. Journal of Neurocytology 26, 327–338.Google Scholar
  24. Canoll, P. D., Musacchio, J. M., Hardy, R., Reynolds, R., Marchionni, M.& Salzer, J. L.(1996) GGF/Neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron 17, 229–243.Google Scholar
  25. Chan, C. L., Wigley, C. B.& Berry, M.(1990) Oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells from neonatal and adult rat optic nerve differ in their responsiveness to platelet-derived growth factor. Brain Research, Developmental Brain Research 55, 275–282.Google Scholar
  26. Chang, A., Nishiyama, A., Peterson, J., Prineas, J.& Trapp, B. D.(2000) NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. Journal of Neuroscience 20, 6404–6412.Google Scholar
  27. Chari, D. M.& Blakemore, W. F.(2002) Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells. Glia 37, 307–313.Google Scholar
  28. Chekenya, M., Hjelstuen, M., Enger, P. Ø, Thorsen, F., Jacob, A. L., Probst, B., Haraldseth, O., Pilkington, G., Butt, A., Levine, J. M.& Bjerkvig, R.(2002) The NG2 proteoglycan promotes angiogenesis dependent tumor growth in CNS by sequestering angiostatin. FASEB Journal 16, 586–588.Google Scholar
  29. David, S., Miller, R. H., Patel, R.& Raff, M. C.(1984) Effects of neonatal transection on glial cell development in the rat optic nerve: Evidence that the oligodendrocyte-type 2 astrocyte cell lineage depends on axons for its survival. Journal of Neurocytology 13, 961–974.Google Scholar
  30. Dawson, R. L., Levine, J. M.& Reynolds, R.(2000) NG2-expressing cells in the central nervous system: Are they oligodendrocyte progenitors? Journal of Neuroscience Research 61, 471–479.Google Scholar
  31. Di Bello, I. C., Dawson, M. R., Levine, J. M.& Reynolds, R.(1999) Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brainstem is associated with demyelination rather than inflammation. Journal of Neurocytology 28, 365–381.Google Scholar
  32. Eddleston, M.& Mucke, L.(1993) Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54, 15–36.Google Scholar
  33. Fang, X., Burg, M. A., Barritt, D., Dahlinhuppe, K., Nishiyama, A.& Stallcup, W. B.(1999) Cytoskeletal reorganization induced by engagement of the NG2 proteoglycan leads to cell spreading and migration. Molecular Biology of the Cell 10, 3373–3387.Google Scholar
  34. Fernandez, P. A., Tang, D. G., Cheng, L., Prochiantz, A., Mudge, A. W.& Raff, M. C.(2000) Evidence that axon-derived neuregulin promotes oligodendrocyte survival in the developing rat optic nerve. Neuron 28, 81–90.Google Scholar
  35. Ffrench-Constant, C.& Raff, M. C.(1986) Proliferating bipotential glial progenitor cells in adult rat optic nerve. Nature 319, 499–502.Google Scholar
  36. Fulton, B. P., Burne, J. F.& Raff, M. C.(1992)Visualization of O-2A progenitor cells in developing and adult rat optic nerve by quisqualate-stimulated cobalt uptake. Journal of Neuroscience 12, 4816–4833.Google Scholar
  37. Goddard, D. R., Berry, M.& Butt, A. M.(1999) In vivoactions of fibroblast growth factor-2 and insulinlike growth factor-I on oligodendrocyte development and myelination in the central nervous system. Journal of Neuroscience Research 57, 74–85.Google Scholar
  38. Goddard, D. R., Berry, M., Kirvell, S. L.& Butt, A. M.(2001) Fibroblast growth factor-2 inhibits myelin production by oligodendrocytes in vivo. Molecular and Cellular Neuroscience 18, 557–569.Google Scholar
  39. Goddard, D. R., Berry, M., Kirvell, S. L.& Butt, A. M.(2002) Fibroblast growth factor-2 induces astroglial and microglial reactivity in vivo. Journal of Anatomy 200, 57–67.Google Scholar
  40. Gonzalez, A. M., Berry, M., Maher, P. A., Logan, A.& Baird, A.(1995)Acomprehensive analysis of the distribution of FGF-2 and FGFR1 in the rat brain. Brain Research 701, 201–226.Google Scholar
  41. Goretzki, L., Burg, M. A., Grako, K. A.& Stallcup, W. B.(1999) High-affinity binding of basic fibroblast growth factor and platelet-derived growth factor-AA to the core protein of the NG2 proteoglycan. Journal of Biological Chemistry 274, 16831–16837.Google Scholar
  42. Goretzki, L., Lombardo, C. R.& Stallcup, W. B.(2000) Binding of the NG2 proteoglycan to kringle domains modulates the functional properties of angiostatin and plasmin(ogen). Journal of Biological Chemistry 275, 28625–28633.Google Scholar
  43. Greenwood, K.& Butt, A. M.(2003) Evidence that perinatal and adult NG2 expressing glia are not conventional oligodendrocyte progenitors and do not depend on axons for their survival. Molecular and Cellular Neuroscience, in press.Google Scholar
  44. Haydon, P. G.(2001) GLIA: Listening and talking to the synapse. Nature Reviews Neuroscience 2, 185–193.Google Scholar
  45. Hinks, G. L.& Franklin, R. J. M.(1999) Distinctive patterns of PDGF-A, FGF-2, IGF-I and TGF-β1 gene expression during remyelination of experimentally-induced spinal cord demyelination. Molecular and Cellular Neuroscience 14, 153–168.Google Scholar
  46. Horner, P. J., Power, A. E., Kempermann, G., Kuhn, H. G., Palmer, T. D., Winkler, J., Thal, L. J.& Gage, F. H.(2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. Journal of Neuroscience 20, 2218–2228.Google Scholar
  47. Jones, L. L., Yamaguchi, Y., Stallcup, W. B.& Tuszynski, M. H.(2002) NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. Journal of Neuroscience 22, 2792–2803.Google Scholar
  48. Kaplan, M. R., Cho, M. H., Ullian, E. M., Isom, L. L., Levinson, S. R.& Barres, B. A.(2001) Differential control of clustering of the sodium channels Na(v)1.2 and Na(v)1.6 at developing CNS nodes of Ranvier. Neuron 30, 105–119.Google Scholar
  49. Keirstead, H. S., Levine, J. M.& Blakemore, W. F.(1998) Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia 22, 161–170.Google Scholar
  50. Levine, J. M.(1994) Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. Journal of Neuroscience 14, 4716–4730.Google Scholar
  51. Levine, J. M.& Card, J. P.(1987) Light and electron microscopic localization of a cell surface antigen (NG2) in the rat cerebellum: Association with smooth protoplasmic astrocytes. Journal of Neuroscience 7, 2711–2720.Google Scholar
  52. Levine, J. M., Enquist, L. W.& Card, J. P.(1998) Reactions of oligodendrocyte precursor cells to alpha herpesvirus infection of the central nervous system. Glia 23, 316–328.Google Scholar
  53. Levine, J. M.& Reynolds, R.(1999) Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Experimental Neurology 160, 333–347.Google Scholar
  54. Levine, J. M.& Stallcup, W. B.(1987) Plasticity of developing cerebellar cells in vitrostudied with antibodies against the NG2 antigen. Journal of Neuroscience 7, 2721–2731.Google Scholar
  55. Levine, J. M., Stincone, F.& Lee, Y. S.(1993) Development and differentiation of glial precursor cells in the rat cerebellum. Glia 7, 307–321.Google Scholar
  56. Lin, X. H., Grako, K. A., Burg, M. A.& Stallcup, W. B.(1996) NG2 proteoglycan and the actin-binding protein fascin define separate populations of actincontaining filopodia and lamellipodia during cell spreading and migration. Molecular Biology of the Cell 7, 1977–1993.Google Scholar
  57. Logan, A., Frautschy, S. A., Gonzalez, A. M.& Baird, A.(1992)Atime course for the focal elevation of synthesis of basic fibroblast growth factor and one of its high-affinity receptors (flg) following a localized cortical brain injury. Journal of Neuroscience 12, 3828–3837.Google Scholar
  58. Logan, A., Frautschy, S. A., Gonzalez, A. M., Sporn, M. B.& Baird, A.(1992) Enhanced expression of transforming growth factor beta 1 in the rat brain after a localized cerebral injury. Brain Research 587, 216–225.Google Scholar
  59. Logan, A., Green, J., Hunter, A., Jackson, R.& Berry, M.(1999) Inhibition of glial scarring in the injured rat brain by a recombinanthumanmonoclonal antibody to transforming growth factor-beta2. European Journal of Neuroscience 11, 2367–2374.Google Scholar
  60. Majumdar, M., Vuori, K.& Stallcup, W. B.(2003) Engagement of the NG2 proteoglycan triggers cell spreading via rac and p130cas. Cell Signalling 15, 79–84.Google Scholar
  61. Mallon, B. S., Shick, H. E., Kidd, G. J.& Macklin, W. B.(2002) Proteolipid promoter activity distinguishes two populations of NG2-positive cells throughout neonatal cortical development. Journal of Neuroscience 22, 876–885.Google Scholar
  62. Mason, J. L.& Goldman, J. E.(2002) A2B5+and O4+cycling progenitors in the adult forebrain white matter respond differentially to PDGF-AA, FGF-2, and IGF-1. Molecular and Cellular Neuroscience 20, 30–42.Google Scholar
  63. Messersmith, D. J., Murtie, J. C., Le, T. Q., Frost, E. E.& Armstrong, R. C.(2000) Fibroblast growth factor 2 (FGF2) and FGF receptor expression in an experimental demyelinating disease with extensive remyelination. Journal of Neuroscience Research 62, 241–256.Google Scholar
  64. Nishiyama, A., Chang, A.& Trapp, B. D.(1999) NG2+glial cells:Anovel glial cell population in the adult brain. Journal of Neuropathology and Experimental Neurology 58, 1113–1124.Google Scholar
  65. Nishiyama, A., Lin, X. H., Giese, N., Heldin, C. H.& Stallcup, W. B.(1996a) Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. Journal of Neuroscience Research 43, 299–314.Google Scholar
  66. Nishiyama, A., Lin, X. H., Giese, N., Heldin, C. H.& Stallcup, W. B.(1996b) Interaction between NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells is required for optimal response to PDGF. Journal of Neuroscience Research 43, 315–330.Google Scholar
  67. Nishiyama, A., Yu, M., Drazba, J. A.& Tuohy, V. K.(1997) Normal and reactive NG2+glial cells are distinct from resting and activated microglia. Journal of Neuroscience Research 48, 299–312.Google Scholar
  68. Ong, W. Y.& Levine, J. M.(1999) A light and electron microscopic study of NG2 chondroitin sulfate proteoglycan-positive oligodendrocyte precursor cells in the normal and kainate-lesioned rat hippocampus. Neuroscience 92, 83–95.Google Scholar
  69. Raff, M. C., Miller, R. H.& Noble, M.(1983) A glial progenitor cell that develops in vitrointo an astrocyte or an oligodendrocyte depending on culture medium. Nature 303, 390–396.Google Scholar
  70. Ramon Y Cajal(1909) Histologie du system nerveux de l'home et disvertebres, p. 238, Paris: Maloine.Google Scholar
  71. Reynolds, R.& Hardy, R.(1997) Oligodendroglial progenitors labeled with the O4 antibody persist in the adult rat cerebral cortex in vivo. Journal of Neuroscience Research 47, 455–470.Google Scholar
  72. Stallcup, W. B.& Beasley, L.(1987) Bipotential glial precursor cells of the optic nerve express the NG2 proteoglycan. Journal of Neuroscience 7, 2737–2744.Google Scholar
  73. Steinhauser, C., Berger, T., Frotscher, M.& Kettenmann, H.(1992) Heterogeneity in the membrane current pattern of identified glial cells in the hippocampal slice. European Journal of Neuroscience 4, 472–484.Google Scholar
  74. Steinhauser, C.& Gallo, V.(1996) News on glutamate receptors in glial cells. Trends in Neurosciences 19, 339–345.Google Scholar
  75. Tang, X., Davies, J. E.& Davies, J. A.(2002) Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. Journal of Neuroscience Research 71, 427–444.Google Scholar
  76. Tillet, E., Gential, B., Garrone, R.& Stallcup, W. B.(2002) NG2 proteoglycan mediates beta1 integrinindependent cell adhesion and spreading on collagen VI. Journal of Cell Biochemistry 86, 726–736.Google Scholar
  77. Tillet, E., Ruggiero, F., Nishiyama, A.& Stallcup, W. B.(1997) The membrane-spanning proteoglycan NG2 binds to collagens V and VI through the central nonglobular domain of its core protein. Journal of Biological Chemistry 272, 10769–10776.Google Scholar
  78. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S.& Barres, B. A.(2001) Control of synapse number by glia. Science 291, 657–661.Google Scholar
  79. Walz, W.(2000) Controversy surrounding the existence of discrete functional classes of astrocytes in adult gray matter. Glia 31, 95–103.Google Scholar
  80. Walz, W.& Lang, M. K.(1998) Immunocytochemical evidence for a distinct GFAP-negative subpopulation of astrocytes in the adult rat hippocampus. Neuroscience Letters 257, 127–130.Google Scholar
  81. Wolswijk, G.& Noble, M.(1989) Identification of an adult-specific glial progenitor cell. Development 105, 387–400.Google Scholar
  82. Wolswijk, G., Riddle, P. N.& Noble, M.(1990) Coexistence of perinatal and adult forms of a glial progenitor cell during development of the rat optic nerve. Development 109, 691–698.Google Scholar
  83. Yuan, X., Eisen, A. M., Mcbain, C. J.& Gallo, V.(1998)Arole for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development 125, 2901–2914.Google Scholar
  84. Zhang, Y., Tohyama, K., Winterbottom, J. K., Haque, N. S., Schachner, M., Lieberman, A. R.& Anderson, P. N.(2001) Correlation between putative inhibitory molecules at the dorsal root entry zone and failure of dorsal root axonal regeneration. Molecular and Cellular Neuroscience 17, 444–459.Google Scholar
  85. Zhou, M.& Kimelberg, H. K.(2001) Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression. Journal of Neuroscience 21, 7901–7908.Google Scholar
  86. Zhou, M., Schools, G. P.& Kimelberg, H. K.(2000) GFAP mRNA positive glia acutely isolated from rat hippocampus predominantly show complex current patterns. Brain Research, Molecular Brain Research 76, 121–131.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Arthur M. Butt
    • 1
  • Jennifer Kiff
    • 1
  • Paul Hubbard
    • 1
  • Martin Berry
    • 1
  1. 1.Centre for Neuroscience Research, GKT School of Biomedical SciencesKing's CollegeLondonUnited Kingdom

Personalised recommendations