Applied Categorical Structures

, Volume 11, Issue 5, pp 421–445 | Cite as

About И-quantifiers

  • Matías Menni


Gabbay and Pitts observed that the Fraenkel–Mostowski model of set-theory supports useful notions of “name-abstraction” and “fresh-name”. In order to understand their work in a more general setting we introduce the notions of И-units and И-relations in a regular category D. A И-relation is given by a functor A # (-):DD and we show that in the case that D is a topos then A # (-) has a right adjoint [A](-) that can be thought of as an object of abstractions. We also explore the existence of a right adjoint to [A](-) and relate it to the “name swapping” operations considered as fundamental by Gabbay and Pitts. We present many examples of categories where this notions occur and we relate the results here with Pitts' Nominal Logic.

quantifiers adjoint functors variable binding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barr, M., Grillet, P. A. and van Osdol, D. H.: Exact Categories and Categories of Sheaves, Lecture Notes in Mathematics 236, Springer-Verlag, New York, 1971.Google Scholar
  2. 2.
    Bergeron, F., Labelle, G. and Leroux, P.: Combinatorial Species and Tree-Like Structures, Vol. 67, Cambridge University Press, 1998.Google Scholar
  3. 3.
    Borceux, F.: Handbook of Categorical Algebra 2, Encyclopedia of Mathematics and its Applications 51, Cambridge University Press, 1994.Google Scholar
  4. 4.
    Day, B.: On closed categories of functors, in Reports of the Midwest Category Seminar, Lecture Notes in Mathematics 137, Springer-Verlag, New York, 1970, pp. 1–38.Google Scholar
  5. 5.
    Eilenberg, S. and Kelly, G. M.: Closed categories, in Proceedings of the Conference on Categorical Algebra, La Jolla 1965, Springer, New York, 1966, pp. 421–562.Google Scholar
  6. 6.
    Fiore, M.: Notes on combinatorial functors, Draft, January 2001.Google Scholar
  7. 7.
    Fiore, M., Plotkin, G. D. and Turi, D.: Abstract syntax and variable binding, in 14th Annual Symposium on Logic in Computer Science, IEEE Computer Society Press, Washington, 1999.Google Scholar
  8. 8.
    Gabbay, J. and Pitts, A.M.: A new approach to abstract syntax with variable binding, Formal Aspects of Computing 13 (2002), 341–363. Special issue in honour of Rod Burstall.Google Scholar
  9. 9.
    Hofmann, M.: Semantical analysis of higher order abstract syntax, in 14th Annual Symposium on Logic in Computer Science, IEEE Computer Society Press, Washington, 1999.Google Scholar
  10. 10.
    Johnstone, P. T.: Topos Theory, Academic Press, 1977.Google Scholar
  11. 11.
    Joyal, A.: Une theorie combinatoire des séries formelles, Advances in Mathematics 42 (1981), 1–82.Google Scholar
  12. 12.
    Kock, A. and Reyes, G. E.: Aspects of fractional exponent functors, Theory and Applications of Categories 5(10) (1999), 251–265.Google Scholar
  13. 13.
    Lawvere, F. W.: Adjoints in and among bicategories, in Logic and Algebra, Lecture Notes in Pure and Applied Algebra 180, Marcel Dekker, Inc., 1996, pp. 181–189. Proceedings of the 1994 Siena conference in memory of Roberto Magari.Google Scholar
  14. 14.
    Mac Lane, S.: Categories for the Working Mathematician, Graduate Texts in Mathematics, Springer-Verlag, New York, 1971.Google Scholar
  15. 15.
    Mac Lane, S. and Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory, Universitext, Springer-Verlag, 1992.Google Scholar
  16. 16.
    Nava, O. and Rota, G.-C.: Plethysm, categories and combinatorics, Advances in Mathematics 58 (1985), 61–88.Google Scholar
  17. 17.
    Pitts, A. M.: Categorical logic, in S. Abramsky, D. M. Gabbay and T. S. E. Maibaum (eds), Handbook of Logic in Computer Science, Volume 5. Algebraic and Logical Structures, Oxford University Press, 2000, Chapter 2.Google Scholar
  18. 18.
    Pitts, A. M.: Nominal logic: A first order theory of names and binding, in N. Kobayashi and B. C. Pierce (eds), Fourth International Symposium on Theoretical Aspects of Computer Software (TACS 2001), Sendai, Japan, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2001.Google Scholar
  19. 19.
    Pitts, A. M. and Gabbay, M. J.: A metalanguage for programming with bound names modulo renaming, in R. Backhouse and J. N. Oliviera (eds), Mathematics of Program Construction. Proceedings of the 5th International Conference, MPC2000, Ponte de Lima, Portugal, July 2000, Lecture Notes in Computer Science 1837, Springer-Verlag, New York, 2000, pp. 230–255.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Matías Menni
    • 1
  1. 1.LIFIA, Universidad Nacional de La PlataLa PlataArgentina

Personalised recommendations