Advertisement

Pharmaceutical Research

, Volume 20, Issue 9, pp 1381–1388 | Cite as

Amino Acid Ester Prodrugs of Floxuridine: Synthesis and Effects of Structure, Stereochemistry, and Site of Esterification on the Rate of Hydrolysis

  • Balvinder S. Vig
  • Philip J. Lorenzi
  • Sachin Mittal
  • Christopher P. Landowski
  • Ho-Chul Shin
  • Henry I. Mosberg
  • John M. Hilfinger
  • Gordon L. Amidon
Article

Abstract

Purpose. To synthesize amino acid ester prodrugs of floxuridine (FUdR) and to investigate the effects of structure, stereochemistry, and site of esterification of promoiety on the rates of hydrolysis of these prodrugs in Caco-2 cell homogenates.

Methods. Amino acid ester prodrugs of FUdR were synthesized using established procedures. The kinetics of hydrolysis of prodrugs was evaluated in human adenocarcinoma cell line (Caco-2) homogenates and pH 7.4 phosphate buffer.

Results. 3′-Monoester, 5′-monoester, and 3′,5′-diester prodrugs of FUdR utilizing proline, L-valine, D-valine, L-phenylalanine, and D-phenylalanine as promoieties were synthesized and characterized. In Caco-2 cell homogenates, the L-amino acid ester prodrugs hydrolyzed 10 to 75 times faster than the corresponding D-amino acid ester prodrugs. Pro and Phe ester prodrugs hydrolyzed much faster (3- to 30-fold) than the corresponding Val ester prodrugs. Further, the 5′-monoester prodrugs hydrolyzed significantly faster (3-fold) than the 3′,5′-diester prodrugs.

Conclusions. Novel amino acid ester prodrugs of FUdR were successfully synthesized. The results presented here clearly demonstrate that the rate of FUdR prodrug activation in Caco-2 cell homogenates is affected by the structure, stereochemistry, and site of esterification of the promoiety. Finally, the 5′-Val and 5′-Phe monoesters exhibited desirable characteristics such as good solution stability and relatively fast enzymatic conversion rates.

floxuridine prodrug hydrolysis stability amino acid Caco-2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Kemeny, Y. Huang, A. M. Cohen, W. Shi, J. A. Conti, M. F. Brennan, J. R. Bertino, A. D. Turnbull, D. Sullivan, J. Stockman, L. H. Blumgart, and Y. Fong. Hepatic arterial infusion of chemotherapy after resection of hepatic metastases from colorectal cancer. N. Engl. J. Med. 341:2039–2048 (1999).Google Scholar
  2. 2.
    J. L. Grem. 5–Fluorouracil: Forty–plus and still ticking. A review of its preclinical and clinical development. Invest. New Drugs 18:299–313 (2000).Google Scholar
  3. 3.
    B. A. Chabner, D. P. Ryan, L. Paz–Area, R. Garcia–Carbonero, and P. Calabresi. Antineoplastic agents. In G. Hardman and L. E. Limbird (eds.), Goodman & Gilman's The Pharmacological Basis of Therapeutics, 10th ed., Mc–Graw Hill, New York, 2001, pp. 1389–1459.Google Scholar
  4. 4.
    J. A. Van Laar, Y. M. Rustum, S. P. Ackland, C. J. Van Groeningen, and G. J. Peters. Comparison of 5–fluoro–2′–deoxyuridine with 5–fluorouracil and their role in the treatment of colorectal cancer. Eur. J. Cancer 34:296–306 (1998).Google Scholar
  5. 5.
    H. K. Han and G. L. Amidon. Targeted prodrug design to optimize drug delivery. AAPS Pharmsci. 2:E6(2000).Google Scholar
  6. 6.
    W. A. Denny. Prodrug strategies in cancer therapy. Eur. J. Med. Chem. 36:577–595 (2001).Google Scholar
  7. 7.
    R. A. Schwendener, A. Supersaxo, W. Rubas, H. G. Weder, H. R. Hartmann, H. Schott, A. Ziegler, and H. Hengartner. 5′–O–Palmitoyl–and 3′,5′–O–dipalmitoyl–5–fluoro–2′–deoxyuridine—novel lipophilic analogues of 5′–fluoro–2′–deoxyuridine: Synthesis, incorporation into liposomes and preliminary biological results. Biochem. Biophys. Res. Commun. 126:660–666 (1985).Google Scholar
  8. 8.
    S. Fukushima, T. Kawaguchi, M. Nishida, K. Juni, Y. Yamashita, M. Takahashi, and M. Nakano. Selective anticancer effects of 3′,5′–dioctanoyl–5–fluoro–2′–deoxyuridine, a lipophilic prodrug of 5–fluoro–2′–deoxyuridine, dissolved in an oily lymphographic agent on hepatic cancer of rabbits bearing vx–2 tumor. Cancer Res. 47:1930–1934 (1987).Google Scholar
  9. 9.
    T. Kawaguchi, S. Fukushima, Y. Hayashi, and M. Nakano. Nonenzymatic enzymatic hydrolysis of 5–fluoro–2′–deoxyuridine (FUdR) esters. Pharm. Res. 5:741–744 (1988).Google Scholar
  10. 10.
    T. Halmos, P. Moroni, K. Antonakis, and J. Uriel. Fatty acid conjugates of 2′–deoxy–5–fluorouridine as prodrugs for the selective delivery of 5–fluorouracil to tumor cells. Biochem. Pharmacol. 44:149–155 (1992).Google Scholar
  11. 11.
    S. C. Tobias and R. F. Borch. Synthesis and biological studies of novel nucleoside phosphoramidate prodrugs. J. Med. Chem. 44:4475–4480 (2001).Google Scholar
  12. 12.
    Y. Wei, Y. Yan, D. Pei, and B. Gong. A photoactivated prodrug. Bioorg. Med. Chem. Lett. 8:2419–2422 (1998).Google Scholar
  13. 13.
    Z. Xia, L. I. Wiebe, G. G. Miller, E. E. Knaus. Synthesis and biological evaluation of butanoate, retinoate, bis(2,2,2–trichloroethyl)phosphate derivatives of 5–fluoro–2′–deoxyuridine 2′,5–difluoro–2′–deoxyuridine as potential dual action anti–cancer prodrugs. Arch. Pharm. (Weinheim) 332:286–294 (1999).Google Scholar
  14. 14.
    H. K. Han, D. M. Oh, and G. L. Amidon. Cellular uptake mechanism of amino acid ester prodrugs in caco–2/hpept1 cells overexpressing a human peptide transporter. Pharm. Res. 15:1382–1386 (1998).Google Scholar
  15. 15.
    I. Rubio–Aliaga and H. Daniel. Mammalian peptide transporters as targets for drug delivery. Trends Pharmacol. Sci. 23:434–440 (2002).Google Scholar
  16. 16.
    D. M. Oh, H. Han, and G. L. Amidon. Drug transport and targeting. Intestinal transport. Pharm. Biotechnol. 12:59–88 (1999).Google Scholar
  17. 17.
    M. Sugawara, W. Huang, Y. L. Fei, F. H. Leibach, V. Ganapathy, and M. E. Ganapathy. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters pept1 and pept2. J. Pharm. Sci. 89:781–789 (2000).Google Scholar
  18. 18.
    T. Nakanishi, I. Tamai, A. Takaki, A. Tsuji. Cancer cell–targeted drug delivery utilizing oligopeptide transport activity. Int. J. Cancer 88:274–280 (2000).Google Scholar
  19. 19.
    D. E. Gonzalez, K. M. Covitz, W. Sadee, and R. J. Mrsny. An oligopeptide transporter is expressed at high levels in the pancreatic carcinoma cell lines aspc–1 and capan–2. Cancer Res. 58:519–525 (1998).Google Scholar
  20. 20.
    R. J. Mrsny. Oligopeptide transporters as putative therapeutic targets for cancer cells. Pharm. Res. 15:816–818 (1998).Google Scholar
  21. 21.
    V. H. Lee. Mucosal drug delivery. J. Natl. Cancer Inst. Monogr. 41:4(2001).Google Scholar
  22. 22.
    F. M. Williams. Clinical significance of esterases in man. Clinical Pharmacokin. 10:392–403 (1985).Google Scholar
  23. 23.
    P. K. Banerjee and G. L. Amidon. Design of prodrugs based on enzyme–substrate specificity. In H. Bundgaard (ed.), Design of Prodrugs, Elsevier, Sciences Publisher, New York, 1985, pp. 93–133.Google Scholar
  24. 24.
    T. Satoh, P. Taylor, W. F. Bosron, S. P. Sanghani, M. Hosokawa, and B. N. La Du. Current progress on esterases: From molecular structure to function. Drug Metab. Dispos. 30:488–493 (2002).Google Scholar
  25. 25.
    S. A. Varia, S. Schuller, and V. J. Stella. Phenytoin prodrugs iv: Hydrolysis of various 3–(hydroxymethyl)phenytoin esters. J. Pharm. Sci. 73:1074–1080 (1984).Google Scholar
  26. 26.
    T. C. Bruice and S. Benkovic. Bioorganic mechanisms, W. A. Benjamin, Inc., New York (1966).Google Scholar
  27. 27.
    R. Wolfenden. The mechanism of hydrolysis of amino acyl RNA. Biochemistry 2:1090–1092 (1963).Google Scholar
  28. 28.
    I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (caco–2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749 (1989).Google Scholar
  29. 29.
    K. Tamura, C. P. Lee, P. L. Smith, and R. T. Borchardt. Metabolism, uptake, transepithelial transport of the stereoisomers of val–val–val in the human intestinal cell line, caco–2. Pharm. Res. 13:1663–1667 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Balvinder S. Vig
    • 1
  • Philip J. Lorenzi
    • 1
  • Sachin Mittal
    • 1
  • Christopher P. Landowski
    • 1
  • Ho-Chul Shin
    • 1
  • Henry I. Mosberg
    • 2
  • John M. Hilfinger
    • 3
  • Gordon L. Amidon
    • 1
  1. 1.Department of Pharmaceutical Sciences, College of PharmacyUniversity of MichiganAnn Arbor
  2. 2.Department of Medicinal Chemistry, College of PharmacyUniversity of MichiganAnn Arbor
  3. 3.TSRL Inc.Ann Arbor

Personalised recommendations