Origins of life and evolution of the biosphere

, Volume 33, Issue 6, pp 597–607 | Cite as

The Large Millimeter Telescope/El Gran Telescopio Milimétrico: A New Instrument for Astrobiology

  • William M. Irvine
  • Alberto Carramiñana
  • Luis Carrasco
  • F. Peter Schloerb
Article

Abstract

The Instituto Nacional de Astrofísica, Óptica y Electrónica in Mexico and the University of Massachusetts in the U.S.A. are collaborating to build the world's largest radio telescope that operates at short millimeter wavelengths. This facility, known as the Large Millimeter Telescope (LMT) or el Gran Telescopio Milimétrico (GTM), is being sited at an altitudeof 4600 m on Volcan Sierra Negra in the Mexican state of Puebla. The telescope will be a fully steerable dish with a diameter of 50 m and a surface consisting of 180 panels that are actively adjusted under computer control to correct for deformations due to gravity and temperature gradients. Instruments will include focal plane arrays to image both continuum and spectral line emission from celestial sources. The LMT/GTM will be an extremelypowerful facility for studies encompassing almost all areas of astronomy, including astrobiology. In particular, the high sensitivity, angular resolution, and mapping speed will enable detailed investigations of the organic chemistry of interstellarmolecular clouds, protoplanetary disks, and comets.

astrobiology comets interstellar chemistry molecular clouds radio astronomy radio telescope 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bockelée-Morvan, D. and Crovisier, J.: 2002, Lessons of Comet Hale-Bopp for Coma Chemistry: Observations and Theory, Earth, Moon, Planets (in press).Google Scholar
  2. Berezhnoi, A. A., Cruz, L., Sandoval, L. and Palma, A.: 2002, Possibility of Detection of Glycine with 50 m Large Millimeter Telescope in Mexico, Orig. Life Evol. Biosph. (in press).Google Scholar
  3. Delsemme, A. H.: 2000, 1999 Kuiper Prize Lecture: Cometary Origin of the Biosphere, Icarus 146, 313–325.Google Scholar
  4. Dickens, J. E., Irvine, W. M., Nummelin, A., Møllendal, H., Saito, S., Thorwirth, S., Hjalmarson, Å. and Ohishi, M.: 2001, Searches for New Interstellar Molecules, Including a Tentative Detection of Aziridine and a Possible Detection of Propenal, Spectrochimica Acta 57, 643–660.Google Scholar
  5. Dickens, J. E., Irvine, W. M., Snell, R. L., Bergin, E. A., Schloerb, F. P., Pratap, P. and Miralles, M. P.: 2000, A Study of the Physics and Chemistry of L134N, Astrophys. J. 542, 870–889.Google Scholar
  6. Ehrenfreund, P., Becker, L., Blank, J., Brucato, J. R., Colangeli, L., Derenne, S., Despois, D., Dutrey, A., Fraaije, H., Irvine, W. M., Lazcano, A., Owen, T. and Robert, F.: 2002, Astrophysical and Astrochemical Insights into the Origin of Life, Rep. Progress Phys. (in press).Google Scholar
  7. Erickson, N. R., Grosslein, R. M., Erickson, R. B. and Weinreb, S.: 1999, A Cryogenic Focal Plane Array for 85–115 GHz using MMIC Preamplifiers', IEEE Trans. Microwave Theory Tech. 47, 2212–2219.Google Scholar
  8. Glenn, J., Bock, J. J., Chattopadhyay, G., Edgington, S. F., Lange, A. E., Zmuidzinas, J., Mauskopf, P. D., Rownd, B., Yuen, L. and Ade, P. A.: 1998, Bolocam: A Millimeter-wave Bolometric Camera, Proc. SPIE 3357, 326–334.Google Scholar
  9. Hollis, J. M., Lovas, F. J., Jewell, P. R. and Coudert, L. H.: 2002, Interstellar Antifreeze: Ethylene Glycol, Astrophys. J. 571, L59–L62.Google Scholar
  10. Hollis, J. M., Lovas, F. J. and Jewell, P. R.: 2000, Interstellar Glycolaldehyde: The First Sugar, Astrophys. J. 540, L107–L111.Google Scholar
  11. Irvine, W. M. and Bergin, E. A.: 2000, 'Molecules in Comets: An ISM-Solar System Connection?', in Y. C. Minh and E. F. van Dishoeck (eds), Astrochemistry: FromMolecular Clouds to Planetary Systems, Astron. Soc. Pacific, pp. 447–460.Google Scholar
  12. Irvine, W. M. and Schloerb, F. P.: 2002, Observations of Deuterated Molecules with the Large Millimeter Telescope, Planet. Space Sci. 50, 1179–1184.Google Scholar
  13. Irvine, W. M., Schloerb, F. P., Crovisier, J., Fegley Jr., B. and Mumma, M. J.: 2000, 'Comets: A Link between Interstellar and Nebular Chemistry', in V. Mannings, A. Boss and S. Russell (eds), Protostars and Planets IV, University Arizona Press, pp. 1159–1200.Google Scholar
  14. Langer, W. D., Van Dishoeck, E. F., Bergin, E. A., Blake, G. A., Tielens, A. G. G. M., Velusamy, T. and Whittet, D. C. B.: 2000, 'Chemical Evolution of Protostellar Material', in V. Mannings, A. Boss and S. Russell (eds), Protostars and Planets IV, University Arizona Press, pp. 29–57.Google Scholar
  15. Lazcano, A.: 1986, Prebiotic Evolution and the Origin of Cells, Treballs Soc. Catalana Biol. 39, 73–104.Google Scholar
  16. Lazcano, A.: 1994a, 'The Transition from Non-living to Living', in H. Baltscheffsky (ed.), Early Life on Earth, Columbia University Press, pp. 60–69.Google Scholar
  17. Lazcano, A.: 1994b, 'The RNA World, its Predecessors and Descendants', in H. Baltscheffsky (ed.), Early Life on Earth, Columbia University Press, pp. 70–80.Google Scholar
  18. Lazcano-Araujo, A. and Oró, J.: 1981, 'Cometary Material and the Origin of Life on Earth', in C. Ponnamperuma (ed.), Comets and the Origin of Life, D. Reidel Publ. Co., Dordrecht, pp. 191–225.Google Scholar
  19. Lowenthal, J. D. and Hughes, D. H. (eds): 2001, Deep Millimeter Surveys: Implications for Galaxy Formation and Evolution, World Scientific, New Jersey, London, Singapore, Hong Kong.Google Scholar
  20. Meier, R. and Owen, T. C.: 1999, Cometary Deuterium, Space Science Revs. 90, 33–43.Google Scholar
  21. Navarro-González, R., Ponnamperuma, C. and Khanna, R. K.: 1991, Computational Study of Radiation Chemical Processing in Comet Nuclei, Orig. Life Evol. Biosph. 21, 359–374.Google Scholar
  22. Oró, J., Mills, T. and Lazcano, A.: 1991, Comets and the Formation of Biochemical Compounds on the Primitive Earth – A Review, Orig. Life Evol. Biosph. 21, 267–278.Google Scholar
  23. Rohlfs, R.: 1986, Tools of Radio Astronomy, Springer-Verlag, Berlin.Google Scholar
  24. Schloerb, F. P.: 1999, 'Millimeter-wave Spectroscopy in the Solar System', in W. F. Wall et al. (eds), Millimeter-Wave Astronomy: Molecular Chemistry and Physics in Space, Kluwer, Dordrecht, pp. 15–38.Google Scholar
  25. Turner, B. E. and Apponi, A. J.: 2001, 'Microwave Detection of Interstellar Vinyl Alcohol, CH2 = CHOH', Astrophys. J. 561, L207–L210.Google Scholar
  26. Ungerechts, H., Bergin, E. A., Goldsmith, P. F., Irvine, W. M., Schloerb, F. P. and Snell, R. L.: 1997, Chemical and Physical Gradients along the OMC-1 Ridge, Astrophys. J. 482, 245–266.Google Scholar
  27. Wall, W. F., Carramiñana, A., Carrasco, L. and Goldsmith, P. F. (eds): 1999, Millimeter-Wave Astronomy: Molecular Chemistry and Physics in Space, Kluwer Academic Publishers, Dordrecht.Google Scholar
  28. Walmsley, C. M., Bachiller, R., Pineau de Forets, G. and Schilke, P.: 2002, Detection of FeO toward Sagittarius B2, Astrophys. J. 566, L109-L112.Google Scholar
  29. Whittet, D. C. B.: 1997, Is Extraterrestrial Organic Matter Relevant to the Origin of Life on Earth?, Orig. Life Evol. Biosph. 27, 249–262.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • William M. Irvine
    • 1
  • Alberto Carramiñana
    • 2
  • Luis Carrasco
    • 2
  • F. Peter Schloerb
    • 1
  1. 1.Department of Astronomy and Five College Radio Astronomy ObservatoryUniversity of MassachusettsAmherstU.S.A.
  2. 2.Óptica y ElectrónicaInstituto Nacional de AstrofísicaPuebla, PueblaMexico

Personalised recommendations