Journal of Bioenergetics and Biomembranes

, Volume 35, Issue 4, pp 337–345 | Cite as

Structure and Function of the Vacuolar H+-ATPase: Moving from Low-Resolution Models to High-Resolution Structures

  • Michael HarrisonEmail author
  • Lyndsey Durose
  • Chun Feng Song
  • Elizabeth Barratt
  • John Trinick
  • Richard Jones
  • John B. C. Findlay


In the absence of a high-resolution structure for the vacuolar H+-ATPase, a number of approaches can yield valuable information about structure/function relationships in the enzyme. Electron microscopy can provide not only a representation of the overall architecture of the complex, but also a low-resolution map onto which structures solved for individually expressed subunits can be fitted. Here we review the possibilities for electron microscopy of the Saccharomyces V-ATPase and examine the suitability of V-ATPase subunits for expression in high yield prokaryotic systems, a key step towards high-resolution structural studies. We also review the role of experimentally-derived structural models in understanding structure/function relationships in the V-ATPase, with particular reference to the complex of proton-translocating 16 kDa proteolipids in the membrane domain of the V-ATPase. This model in turn makes testable predictions about the sites of binding of bafilomycins and the functional interactions between the proteolipid and the single-copy membrane subunit Vph1p, with implications for the constitution of the proton translocation pathway.

Vacuolar membrane V-ATPase expression circular dichroism electron microscopy modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhandari, P., and Gowrishankar, J. (2003). J. Bacteriol. 179, 4403–4406.Google Scholar
  2. Boekema, E. J., Ubbink-Kok, T., Lolkema, J. S., Brisson, A., and Konings, W. N. (1997). Proc. Natl. Acad. Sci. U.S.A. 94, 14291–14293.PubMedGoogle Scholar
  3. Bowman, B. J., and Bowman, E. J. (2002). J. Biol. Chem. 277, 3965–3972.PubMedGoogle Scholar
  4. Bowman, E. J., Tenney, K., and Bowman, B. J. (1988). J. Biol. Chem. 263, 13994–14001.PubMedGoogle Scholar
  5. Charsky, C. M. H., Schumann, N. J., and Kane, P. M. (2000). J. Biol. Chem. 275, 37232–37239.PubMedGoogle Scholar
  6. Chattopadhyay, A., and London, E. (1987). Biochemistry 26, 39–45.PubMedGoogle Scholar
  7. Chen, J. Q., Acton, T. B., Basu, S. K., Montelione, G. T., and Inouye, M. (2002). J. Mol. Microbiol. Biotech. 4, 519–524.Google Scholar
  8. Doherty, R. D., and Kane, P. M. (1993). J. Biol. Chem. 268, 16845–16851.PubMedGoogle Scholar
  9. Domgall, I., Venzke, D., Luttge, U., Ratajczak, R., and Böttcher, B. (2002). J. Biol. Chem. 277, 13115–13121.PubMedGoogle Scholar
  10. Falke, J. J., and Koshland, D. E. (1987). Science 237, 1596–1600.PubMedGoogle Scholar
  11. Geyer, M., Fackler, O. T., and Peterlin, B. M. (2002a). Mol. Biol. Cell 13, 2045–2056.PubMedGoogle Scholar
  12. Geyer, M., Yu, H., Mandic, R., Linnemann, T., Zheng, Y. H., Fackler, O. T., and Peterlin, B. M. (2002b). J. Biol. Chem. 277, 28521–28529.PubMedGoogle Scholar
  13. Gibson, L. C., Cadwallader, G., and Finbow, M. E. (2002). Biochem. J. 366, 911–919.PubMedGoogle Scholar
  14. Girvin, M. E., Rastogi, V. K., Abildgaard, F., Markley, J. L., and Fillingame, R. H. (1998). Biochemistry 37, 8817–8824.PubMedGoogle Scholar
  15. Grabe, M., Wang, H., and Oster, G. (2000). Biophys. J. 78, 2798–2813.PubMedGoogle Scholar
  16. Grüber, G., Godovac-Zimmermann, J., Link, T. A., Coskun, U., Rizzo, V. F., Betz, C., and Bailer, S. M. (2002). Biochem. Biophys. Res. Commun. 298, 383–391.PubMedGoogle Scholar
  17. Harrison, M. A., Jones, P. C., Kim, Y.-I., Finbow, M. E., and Findlay, J. B. C. (1994). Eur. J. Biochem. 221, 111–120.PubMedGoogle Scholar
  18. Harrison, M. A., Murray, J., Powell, B., Kim, Y.-I., Finbow, M. E., and Findlay, J. B. C. (1999). J. Biol. Chem. 274, 25461–25470.PubMedGoogle Scholar
  19. Harrison, M. A., Powell, B., Finbow, M. E., and Findlay, J. B. C. (2000). Biochemistry 39, 7531–7537.PubMedGoogle Scholar
  20. Hirata, R., Graham, L. A., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1997). J. Biol. Chem. 272, 4795–4803.PubMedGoogle Scholar
  21. Holliday, L. S., Gluck, S. L., and Lee, B. S. (1999). J. Bone Miner. Res. 14, SU195.Google Scholar
  22. Holzenburg, A., Jones, P. C., Franklin, T., Pali, T., Heimburg, T., Marsh, D., Findlay, J. B. C., and Finbow, M. E. (1993). Eur. J. Biochem. 213, 21–30.PubMedGoogle Scholar
  23. Hunt, I. E., and Bowman, B. J. (1997). J. Bioenerg. Biomemb. 29, 533–540.Google Scholar
  24. Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003). Proc. Natl. Acad. Sci. U.S.A. 100, 2312–2315.PubMedGoogle Scholar
  25. Jiang, W., and Fillingame, R. H. (1998). Proc. Natl. Acad. Sci. U.S.A. 95, 6607–6612.PubMedGoogle Scholar
  26. Johnson, W. C., Jr. (1990). Proteins: Struct. Funct. Genet. 7, 205–214Google Scholar
  27. Jones, D. T., Tress, M., Bryson, K., and Hadley, C. (1999). Proteins: Struct. Funct. Genet. Suppl. 3, 104–111.Google Scholar
  28. Jones, P. C., and Fillingame, R. H. (1998). J. Biol. Chem. 273, 29701–29705.PubMedGoogle Scholar
  29. Jones, P. C., Harrison, M. A., Kim, Y.-I., Finbow, M. E., and Findlay, J. B. C. (1995). Biochem. J. 312, 739–747.PubMedGoogle Scholar
  30. Jones, R. P. O., Hunt, I. E., Jaeger, J., Ward, A., O'Reilly, J., Barratt, E., Findlay, J. B. C., and Harrison, M. A. (2001). Mol. Memb. Biol. 18, 283–290.Google Scholar
  31. Kane, P. M. (1995). J. Biol. Chem. 270, 17025–17032.PubMedGoogle Scholar
  32. Kawasaki-Nishi, S., Nishi, T., and Forgac, M. (2001). Proc. Natl. Acad. Sci. U.S.A. 98, 12397–12402.PubMedGoogle Scholar
  33. Klaholz, B. P., Pape, T., Zavialov, A. V., Myasnikov, A. G., Orlova, E. V., Vestergaard, B., Ehrenberg, M., and van Heel, M. (2003). Nature 421, 90–94.PubMedGoogle Scholar
  34. Landolt-Marticorena, C., Williams, K. M., Correa, J., Chen, W., and Manolson, M. F. (2000). J. Biol. Chem. 275, 15449–15457.Google Scholar
  35. Leng, X. H., Manolson, M. F., Liu, Q., and Forgac, M. (1996). J. Biol. Chem. 271, 22487–22493.PubMedGoogle Scholar
  36. Leng, X. H., Nishi, T., and Forgac, M. (1999). J. Biol. Chem. 274, 14655–14661.Google Scholar
  37. Liu, Z., Zhang, J., Li, P., Chen, S. R. W., and Wagenknecht, T. (2002). J. Biol. Chem. 277, 46712–46719.PubMedGoogle Scholar
  38. Mandel, M., Moriyama, Y., Hulmes, J. D., Pan, Y.-C. E., Nelson, H., and Nelson, N. (1988). Proc. Natl. Acad. Sci. U.S.A. 85, 5521–5524.PubMedGoogle Scholar
  39. Nelson, H., Mandiyan, S., and Nelson, N. (1994). J. Biol. Chem. 269, 24150–24155.PubMedGoogle Scholar
  40. Nishi, T., and Forgac, M. (2002). Nat. Rev. Mol. Cell Biol. 3, 94–103.PubMedGoogle Scholar
  41. Noumi, T., Beltran, C., Nelson, H., and Nelson, N. (1991). Proc. Natl. Acad. Sci. U.S.A. 88, 1938–1942.PubMedGoogle Scholar
  42. Orlova, E. V., Papakosta, M., Booy, F. P., van Heel, M., and Dolly, J. O. (2003). J. Mol. Biol. 326, 1005–1012.PubMedGoogle Scholar
  43. Pakula, A. A., and Simon, M. I. (1992). Proc. Natl. Acad. Sci. U.S.A. 89, 4144–4148.PubMedGoogle Scholar
  44. Pali, T., Finbow, M. E., and Marsh, D. (1999). Biochemistry 38, 14311–14319.PubMedGoogle Scholar
  45. Powell, B. (1999). PhD Thesis, University of Leeds, Leeds, UK.Google Scholar
  46. Provencher, S. W. (1982). Comp. Phys. Commun. 27, 229–242.Google Scholar
  47. Sagermann, M., Stevens, T. H., and Matthews, B. W. (2001). Proc. Natl. Acad. Sci. U.S.A. 98, 7134–7139.PubMedGoogle Scholar
  48. Sedgwick, E. G., Meuller, J., Hou, C., Rydstrom, J., and Bragg, P. D. (1997). Biochemistry 36, 15285–15293.PubMedGoogle Scholar
  49. Senes, A., Ubarretxena-Belandia, I., and Engelman, D. M. (2001). Proc. Natl. Acad. Sci. U.S.A. 98, 9056–9061.PubMedGoogle Scholar
  50. Stevens, T. H., and Forgac, M. (1997). Annu. Rev. Cell Dev. Biol. 13, 779–808.PubMedGoogle Scholar
  51. Tomashek, J. J., Garrison, B. S., and Klionsky, D. J. (1997). J. Biol. Chem. 272, 16618–16623.PubMedGoogle Scholar
  52. Tomashek, J. J., Sonnenburg, J. L., Artimovich, J. M., and Klionsky, D. J. (1996). J. Biol. Chem. 271, 10397–10404.PubMedGoogle Scholar
  53. Ubarretxena-Belandia, I., and Engelman, D. M. (2001). Curr. Opin. Struct. Biol. 11, 370–376.PubMedGoogle Scholar
  54. Ubbink-Kok, T., Boekema, E. J., van Breemen, J. F. L., Brisson, A., Konings, W. N., and Lolkema, J. S. (2000). J. Mol. Biol. 296, 311–321.PubMedGoogle Scholar
  55. Vik, S. B., and Antonio, B. J. (1994). J. Biol. Chem. 269, 30364–30369.PubMedGoogle Scholar
  56. Walker, M., Zhang, X. Z., Jiang, W., Trinick, J., and White, H. D. (1999). Proc. Natl. Acad. Sci. USA 96, 465–470.PubMedGoogle Scholar
  57. Wilkens, S., and Forgac, M. (2001). J. Biol. Chem. 276, 44064–44068.PubMedGoogle Scholar
  58. Wilkens, S., Vasilyeva, E., and Forgac, M. (1999). J. Biol. Chem. 274, 31804–31810.PubMedGoogle Scholar
  59. Ya, S., Aiwu, Z., Al-Lamki, R. S., and Karet, F. E. (2003). J. Biol. Chem. 278, 20013–20018.PubMedGoogle Scholar
  60. Yasuda, R., Noji, H., Kinosita, K., and Yoshida, M. (1998). Cell 93, 1117–1124.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Michael Harrison
    • 1
    Email author
  • Lyndsey Durose
    • 1
  • Chun Feng Song
    • 2
  • Elizabeth Barratt
    • 1
  • John Trinick
    • 2
  • Richard Jones
    • 2
  • John B. C. Findlay
    • 2
  1. 1.School of Biochemistry and Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
  2. 2.School of Biomedical SciencesUniversity of LeedsLeedsUnited Kingdom

Personalised recommendations