Journal of Mining Science

, Volume 39, Issue 1, pp 94–101 | Cite as

Intensification of Coagulation Purification of Highly Colored Waters

  • G. R. Bochkarev
  • P. V. Kurbatov
  • S. A. Kondrat'ev


The possibility of intensifying the purification of highly colored waters by aluminum hydroxychloride through optimization of coagulant-fluid mixing is confirmed theoretically and experimentally. It is proved that hydrodynamic conditions influence the purification efficiency in the pH range from 7 to 7.5. The advantage of hydraulic-type disperser over mechanical mixers is demonstrated. The value of energy dissipation is substantiated as a criterion of estimating the mixing intensity.

coagulation fulvic acids hydrolyses mixing conditions energy dissipation disperser 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. V. Deryagin, S. S. Dukhin, and N. N. Rulev, Microflotation [in Russian], Khimiya, Moscow (1986).Google Scholar
  2. 2.
    A. M. Nikitin and P. V. Kurbatov, “Certain aspects of purifying the low turbid highly-colored waters,” Vodosnab. San. Tekh., No. 3 (1999).Google Scholar
  3. 3.
    E. D. Babenkov, Water Purification by Coagulants [in Russian], Nauka, Moscow (1977).Google Scholar
  4. 4.
    G. N. Gerasimov, “The coagulation — flocculation processes in surface water treatment,” Vodosnab. San. Tekh., No. 3 (2001).Google Scholar
  5. 5.
    L. P. Alekseeva and V. L. Draginskii, “Mechanical mixing of reagents with water under treatment,” Vodosnab. San. Tekh., No. 3 (2001).Google Scholar
  6. 6.
    P. V. Kurbatov, A. M. Nikitin, and G. R. Bochkarev, “Intensification of coagulation of highly colored waters under the conditions of the North,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (1999).Google Scholar
  7. 7.
    A. T. Pilipenko, N. F. Falendysh, and E. P. Parkhomenko, “The state of aluminum (3) in water solutions,” Vodosnab. San. Tekh., 4,No. 2 (1982).Google Scholar
  8. 8.
    V. V. Goncharuk, N. G. Gerasimenko, I. M. Solomentseva, and T. A. Pakhar', “Extraction of fulvic acids from water with basic aluminum chlorides,” Khim. Tekhnol. Vody, 19,No. 5 (1997).Google Scholar
  9. 9.
    A. Amirtharajah and M. Kirk, “Mills rapid-mix design for mechanisms of alum coagulation,” JWWA, 74,No. 4 (1982).Google Scholar
  10. 10.
    E. Yu. Rozhdestvenskaya, “Intensification of coagulation of colored waters,” Ref. Diss. Cand. Tech. Sci., Moscow (1986).Google Scholar
  11. 11.
    E. D. Babenkov, “Mixing conditions in water preparation processes,” Khim. Tekhnol. Vody, 6,No. 3 (1984).Google Scholar
  12. 12.
    F. Zdan'ski, Z. Grbatsevich, and V. Miloshevich, “Analysis of systems of fast mixing using energy integral equation,” in: Proceedings of the International Conference “Equatek” (1996).Google Scholar
  13. 13.
    I. N. Taganov, “Dissipative ensembles in hydrodynamics of inhomogeneous media,” in: Contemporary Problems of Chemical Technology. Collected Works [in Russian], P. G. Romankov (ed.), Saint Petersburg (1975).Google Scholar
  14. 14.
    P. Bredshow, et al., Turbidity [Russian translation], A. S. Grinevskii (ed.), Mashinostroenie, Moscow (1980).Google Scholar
  15. 15.
    A. S. Ermakov, “Mixing of fluid media in rotary devices at great velocity of energy dissipation,” Ref. Diss. Cand. Tech. Sci., Saint Petersburg (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • G. R. Bochkarev
    • 1
  • P. V. Kurbatov
    • 1
  • S. A. Kondrat'ev
    • 1
  1. 1.Institute of Mining, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations