Advertisement

Pharmaceutical Research

, Volume 20, Issue 9, pp 1444–1451 | Cite as

PEGylated Adenoviruses for Gene Delivery to the Intestinal Epithelium by the Oral Route

  • Xuan Cheng
  • Xin Ming
  • Maria A. CroyleEmail author
Article

Abstract

Purpose. Adenoviruses are being developed for diseases of the gastrointestinal tract. Several in vitro assays were used to predict stability of PEGylated adenovirus along the GI tract and determine in vivo gene transfer after oral administration.

Methods. Recombinant adenovirus was modified with monomethoxypoly(ethylene) glycols activated by cyanuric chloride, succinimidyl succinate, and tresyl chloride. Transduction efficiency was assessed on Caco-2 cells. In vitro stability of viruses in simulated gastric fluid, pancreatic fluid, and bile was assessed by serial dilution on 293 cells. Transduction efficiency in vivo was determined by oral administration of 1 × 1012 particles of unmodified or PEGylated virus to fasted Sprague-Dawley rats.

Results. Titers of unmodified virus declined to undetectable levels after 40 min in simulated gastric fluid while the infectious titer of the modified vectors did not change for 3 h. Similar results were seen with simulated pancreatic fluid. PEGylation also enhanced adenoviral transduction efficiency in Caco-2 cells by a factor of 20. PEGylation enhanced adenovirus transduction efficiency 10- to 40-fold in vivo in intestinal segments that do not express significant amounts of adenovirus receptors (jejunum, colon) with transgene expression located in the crypt regions.

Conclusions. PEGylated adenoviruses are suitable gene delivery vehicles for oral administration.

adenovirus PEGylation intestine gene therapy colon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Ries, P. A. Wingo, D. S. Miller, H. L. Howe, H. K. Weir, H. M. Rosenberg, S. W. Vernon, K. Cronin, and B. K. Edwards. The annual report to the nation on the status of cancer, 1973–1997, with a special section on colorectal cancer. Cancer 88:2398–2424 (2000).Google Scholar
  2. 2.
    M. J. Chen, G. A. Chung–Faye, P. F. Searle, L. S. Young, and D. J. Kerr. Gene therapy for colorectal cancer: therapeutic potential. BioDrugs 15:357–367 (2001).Google Scholar
  3. 3.
    T. Reid, E. Galanis, J. Abbruzzese, D. Sze, J. Andrews, L. Romel, M. Hatfield, J. Rubin, and D. Kirn. Intra–arterial administration of a replication–selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther. 8:1618–1626 (2001).Google Scholar
  4. 4.
    M. W. Sung, H.–C. Yeh, S. N. Thung, M. E. Schwartz, J. P. Mandeli, S.–H. Chen, and S. L. Woo. Intratumoral adenovirus–mediated suicide gene transfer for hepatic metastases from colorectal adenocarcinoma: Results of a Phase I clinical trial. Molec. Ther. 4:182–191 (2001).Google Scholar
  5. 5.
    M. A. Croyle, E. Walter, S. Janich, B. J. Roessler, and G. L. Amidon. Role of integrin expression in adenovirus–mediated gene delivery to the intestinal epithelium. Hum. Gene Ther. 9:561–573 (1998).Google Scholar
  6. 6.
    C. J. Cohen, J. T. C. Shieh, R. J. Pickles, T. Okegawa, J.–T. Hsieh, and J. M. Bergelson. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc. Natl. Acad. Sci. USA 98:15191–15196 (2001).Google Scholar
  7. 7.
    M. A. Croyle, B. J. Roessler, C. P. Hsu, R. Sun, and G. L. Amidon. Beta–cyclodextrins enhance adenoviral–mediated gene delivery to the intestine. Pharm. Res. 15:1348–1355 (1998).Google Scholar
  8. 8.
    P. K. Foreman, M. J. Wainwright, B. Alicke, I. Kovesdi, T. J. Wickham, J. G. Smith, S. Meier–Davis, J. A. Fix, P. Daddona, P. Gardner, and M. T. F. Huang. Adenovirus–mediated transduction of intestinal cells in vivo. Hum. Gene Ther. 9:1313–1321 (1998).Google Scholar
  9. 9.
    D. Y. Cheng, J. K. Kolls, D. Lei, and R. A. Noel. In vivo and in vitro gene transfer and expression in rat intestinal epithelial cells by E1–deleted adenoviral vector. Hum. Gene Ther. 8:755–764 (1997).Google Scholar
  10. 10.
    J. W. Sandberg, C. Lau, M. Jacomino, M. Finegold, and S. J. Henning. Improving access to intestinal stem cells as a step toward intestinal gene transfer. Hum. Gene Ther. 5:323–329 (1994).Google Scholar
  11. 11.
    M. A. Croyle, B. J. Roessler, B. J. Davidson, J. M. Hilfinger, and G. L. Amidon. Factors that influence stability of recombinant adenoviral preparations for human gene therapy. Pharm. Dev. Technol. 3:373–383 (1998).Google Scholar
  12. 12.
    D. K. Hoganson, J. C. Ma, L. Asato, M. Ong, M. A. Printz, B. G. Huyghe, B. A. Sosnowski, and M. J. D'Andrea. Development of a stable adenoviral vector formulation. Bioprocessing 1:43–48 (2002).Google Scholar
  13. 13.
    G. Vellekamp, F. W. Porter, S. Sutjipto, C. Cutler, L. Bondoc, Y. H. Liu, D. Wylie, S. Cannon–Carlson, J. T. Tang, A. Frei, M. Voloch, and S. Zhuang. Empty capsids in column–purified recombinant adenovirus preparations. Hum. Gene Ther. 12:1923–1936 (2001).Google Scholar
  14. 14.
    X. Xie, C. E. Forsmark, and J. Y. N. Lau. Effect of bile and pancreatic juice on adenoviral–mediated gene delivery: implications on the feasibility of gene delivery through ERCP. Dig. Dis. Sci. 45:230–236 (2000).Google Scholar
  15. 15.
    M. A. Croyle, Q. C. Yu, and J. M. Wilson. Development of a rapid method for the PEGylation of adenoviruses with enhanced transduction and improved stability under harsh storage conditions. Hum. Gene Ther. 11:1721–1730 (2000).Google Scholar
  16. 16.
    M. A. Croyle, N. Chirmule, Y. Zhang, and J. M. Wilson. “Stealth” adenoviruses blunt cell mediated and humoral immune responses against the vector and allow for significant gene expression upon re–administration in the lung. J. Virol. 75:4792–4801 (2001).Google Scholar
  17. 17.
    J. V. Maizel, Jr., D. O. White, and M. D. Scharff. The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology 36:115–125 (1968).Google Scholar
  18. 18.
    F. L. Graham and A. J. van der Eb. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467 (1973).Google Scholar
  19. 19.
    P. Murakami, E. Pungor, J. Files, L. Do, R. Van Rijnsoever, R. Vogels, A. Bout, and M. McCaman. A single short stretch of homology between adenoviral vector and packaging cell line can give rise to cytopathic effect–inducing, helper–dependent E1–positive particles. Hum. Gene Ther. 13:909–920 (2002).Google Scholar
  20. 20.
    J. M. Bergelson, J. A. Cunningham, G. Droguett, E. A. Kurt–Jones, A. Krithivas, J. S. Hong, M. S. Horwitz, R. L. Crowell, and R. W. Finberg. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323 (1997).Google Scholar
  21. 21.
    M. C. Dechecchi, P. Melotti, A. Bonizzato, M. Santacatterina, M. Chilosi, and G. Cabrini. Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J. Virol. 75:8772–8780 (2001).Google Scholar
  22. 22.
    P. E. Sharp and M. C. La Regina. The Laboratory Rat (G. J. Krinke, ed.), Academic Press, San Diego, California (2000).Google Scholar
  23. 23.
    H. B. Waynforth and P. A. Flecknell. Experimental and Surgical Techniques in the Rat. Academic Press, San Diego, California (1992).Google Scholar
  24. 24.
    M. A. Croyle, N. Chirmule, Y. Zhang, and J. M. Wilson. PEGylation of first–generation recombinant adenoviruses achieves significant gene expression upon intravenous re–administration. Hum. Gene Ther. 2002:1887–1900 (2002).Google Scholar
  25. 25.
    R. W. Walters, P. Freimuth, T. O. Moninger, I. Ganske, J. Zabner, and M. J. Welsh. Adenovirus fiber disrupts CAR–mediated intercellular adhesion allowing virus escape. Cell 110:789–799 (2002).Google Scholar
  26. 26.
    H. M. Abdou. Dissolution, Bioavailability and Bioequivalence, Mack, Easton, Pennsylvania (1989).Google Scholar
  27. 27.
    J. M. Bergelson. Receptors mediating adenovirus attachment and internalization. Biochem. Pharmacol. 37:975–979 (1999).Google Scholar
  28. 28.
    C. O'Riordan, A. Lachapelle, C. Delgado, V. Parkes, S. C. Wadsworth, A. E. Smith, and G. E. Francis. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum. Gene Ther. 10:1349–1358 (1999).Google Scholar
  29. 29.
    M. Beltig. Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem. Sci. 28:145–151 (2003).Google Scholar
  30. 30.
    T. T. Karali. Comparison of the gastrointestinal anatomy, physiology and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16:351–380 (1995).Google Scholar
  31. 31.
    P. Brandzaeg. Overview of the mucosal immune system. Curr. Top. Microbiol. Immunol. 146:13–28 (1989).Google Scholar
  32. 32.
    H. Romanczuk, C. E. Galer, J. Zabner, G. Barsomian, S. C. Wadsworth, and C. R. O'Riordan. Modification of an adenoviral vector with biologically selected peptides: a novel strategy for gene delivery to cells of choice. Hum. Gene Ther. 10:2615–2626 (1999).Google Scholar
  33. 33.
    S. M. Cohn, T. C. Simon, K. A. Roth, E. H. Birkenmeier, and J. I. Gordon. Use of transgenic mice to map cis–acting elements in the intestinal fatty acid binding protein gene (fabpi) that control its cell lineage specific and regional patterns of expression along the duodenal–colonic and crypt–villus axes of the gut epithelium. J. Cell Biol. 119:27–44 (1992).Google Scholar
  34. 34.
    A. Rubenstein. Approaches and opportunities in colon–specific drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 12:101–149 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.College of Pharmacy, Division of PharmaceuticsThe University of Texas at AustinAustin
  2. 2.Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustin

Personalised recommendations